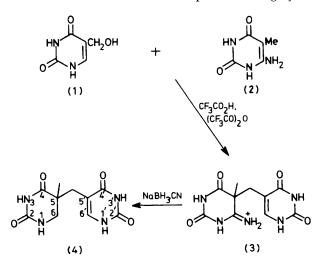
Synthesis of a Photoproduct from Ultraviolet-irradiation of Bacterial Spores: 5,6-Dihydro-5-(a-thyminyl)thymine


By DONALD E. BERGSTROM* and KENNETH F. RASH

(Department of Chemistry, University of California, Davis, California 95616)

Summary 5-Hydroxymethyluracil and 6-aminothymine were coupled in trifluoroacetic acid to give 5,6dihydro-6-imino-5-(α -thyminyl)thymine which was reduced by sodium cyanotrihydridoborate to 5,6-dihydro-5- $(\alpha$ -thyminyl)thymine.

THE principal photoproduct formed on u.v.-irradiation of bacterial spores¹ or DNA in a dehydrated state² has been assigned the structure 5,6-dihydro-5-(α -thyminyl)thymine (4) on the basis of spectroscopic and chromatographic evidence.² We have devised a synthetic route to 5,6dihydro-5-(α -thyminyl)thymine which requires only two steps from readily available starting materials.

Electrophilic substitution at the C-5 position of 6aminouracil and related derivatives can often be achieved without difficulty. In particular numerous examples of acylation or carbonyl group condensations at the C-5 carbon are known.³ Consequently we undertook the synthesis of 5,6-dihydro-5-(α -thyminyl)thymine reasoning that the desired carbon backbone with all of the necessary functionality could be fabricated in a single chemical operation, namely, electrophilic substitution at C-5 of 6-aminothymine by the α -thyminyl cation. Also ready generation of the α -thyminyl cation and subsequent coupling with phenols and related activated aromatic compounds via electrophilic substitution is a well established reaction which proceeds in high yield.⁴

5-Hydroxymethyluracil⁵ (1) and excess of (CF₃CO)₂O dissolved in CF₃CO₂H gave an intermediate which we postulate to be 5-trifluoroacetoxymethyluracil on the basis of the shift

¹ J. E. Donnellan, Jr. and R. B. Setlow, Science, 1969, 149, 308.

¹ J. E. Donnellan, Jr. and R. B. Setlow, Science, 1969, 149, 308.
² A. J. Varghese, Biochem. Biophys. Res. Comm., 1970, 38, 484.
³ J.-L. Bernier, A. Lefebvre, J.-P. Henichart, R. Houssin, and C. Lespagnol, Bull. Soc. chim. France, 1976, 616; Y. Furukawa, O. Miyashita, and S. Shima, Chem. Pharm. Bull. (Japan), 1976, 24, 970; A. D. Broom, J. L. Shim, and G. L. Anderson, J. Org. Chem., 1976, 41, 1095; W. Pfleiderer, F. Sági, and L. Grözinger, Chem. Ber., 1966, 99, 3530.
⁴ R. Brossmer, Angew. Chem. Internat. Edn., 1967, 6, 702.
⁵ R. E. Cline, R. M. Fink, and K. Fink, J. Amer. Chem. Soc., 1959, 81, 2521.
⁶ C. K. Cain, M. F. Mallette, and E. C. Taylor, Jr., J. Amer. Chem. Soc., 1946, 68, 1966.

of the methylene proton resonance from δ 4.67 (s, 2H) to 5.20 (s, 2H). Addition of 1 equiv. of 6-aminothymine⁶ (2) to this solution followed by refluxing for 4 h resulted in a shift of the methylene proton resonance from δ 5.20 to 3.51. On the basis of the ¹H n.m.r. spectrum [in CF₃CO₂H, resonances were observed at δ 2.01 (3H, s), 3.51 (2H, br s), and 7.80 (1H, br s)] and the fact that it is rapidly hydrolysed to 5methyl-5-(α -thyminyl)barbituric acid, this intermediate is presumed to be protonated 5,6-dihydro-6-imino-5-(α thyminyl)thymine (3). Yields as high as 83% could be achieved by rigorously excluding water. Removal of CF_3CO_2H in vacuo gave (3) as a white powder which was used directly in all subsequent synthetic transformations without purification.

Slow addition of aqueous $NaBH_3CN$ over 30 min to (3) while maintaining pH 2-4 by periodic addition of 10% HCl resulted in reduction of the amidinium function at C-6. Removal of water in vacuo left a residue which was taken up in methanol and filtered. The methanol-insoluble material was recrystallized from ethanol-water to give 5,6-dihydro-5-(α -thyminyl)thymine (4) in 38% yield: ¹H n.m.r. (CF₃CO₂H) δ 1·42 (3H, s, Me), 2·77 (1H, d, J 14 Hz), 3·12 (1H, d, J 14 Hz), 3.57 (2H, br s, 6-CH,), 7.52 (1H, br s, 1-H), and 7.77 (1H, d, J 5 Hz, 6'-H); ¹³C n.m.r. [(CD₃)₂SO] (p.p.m. relative to internal Me₄Si) 174.91 (C-4), 164.65 (C-4'), 153.23 (C-2), 151.05 (C-2'), 140.32 (C-6'), 106.86 (C-5'), 45.28 (C-6), 40.95 (C-5), 30.03 (-CH₂-), and 20.01 (Me); m/e 252 (M⁺), 179, 151, and 127; i.r. (KBr) 3190 (N-H) and 1660-1750 cm⁻¹ (C=O); u.v. (H₂O, pH 6) λ_{max} 265 nm (ϵ 8000).

The ¹H n.m.r. assignments were confirmed by reducing intermediate (3) with NaBD₃CN to give (4) deuteriated at C-6 which showed the two doublets at $\delta 2.77$ and 3.12 but no signal at δ 3.57.

A sample of authentic 'spore photoproduct' was obtained from u.v.-irradiated dry DNA following the procedure of Varghese.² The product isolated from DNA and synthetic 5,6-dihydro-5-(α -thyminyl)thymine were subjected to t.l.c. on silica gel. Both had identical R_f values in four different solvent systems. Furthermore, spectral (1H n.m.r., i.r., u.v., mass) and analytical data for the synthetic material were found to be virtually identical to those data published² for the photoproduct isolated from u.v.-irradiated dry DNA, thus establishing the identity of 'spore photoproduct' as 5,6-dihydro-5-(α -thyminyl)thymine (4).

We thank the Donors of The Petroleum Research Fund, administered by the American Chemical Society, and Research Corporation for support.

(Received, 15th November 1977; Com. 1182.)