Biosynthesis of β-Sitosterol from [4-¹³C]Mevalonic Acid and Sodium [1,2-¹³C]Acetate in Tissue Cultures of *Isodon japonicus* Hara

By Shujiro Seo, Yutaka Tomita,* and Kazuo Tori

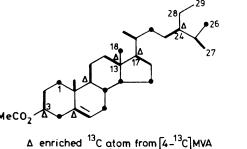
(Shionogi Research Laboratory, Shionogi & Co., Ltd., Fukushima-ku, Osaka, 553 Japan)

Summary The ¹³C-labelling patterns in β -sitosterol, isolated from *Isodon japonicus* Hara tissue cultures fed with [4-¹³C]mevalonic acid and [1,2-¹³C]acetate, provide confirmatory evidence for the postulated backbone rearrangement during biosynthesis of β -sitosterol, and also suggest that biological alkylation at C-24 is stereospecific.

It is well known that the biological conversion of squalene oxide into phytosterol *via* cycloartenol in higher plants

involves backbone rearrangement.¹ The distribution of mevalonate and acetate in the biosynthesis of phytosterol, however, has been determined only for a few positions by using radioisotopically labelled precursors.² We now report confirmatory experimental evidence for the postulated backbone rearrangement by ¹³C n.m.r. studies of two ¹³C-labelled specimens of β -sitosterol isolated from Isodon japonicus Hara tissue cultures† grown in two Linsmaier-Skoog liquid media, one containing [4-13C] mevalonic acid³⁸ and the other containing sodium [1,2-13C]acetate.3b From the same tissue cultures, we obtained ¹³C-labelled oleaneneand ursene-type triterpenes as reported previously.³

TABLE Carbon-13 n.m.r. spectral data for β -sitosteryl acetate biosynthesized from sodium $[1,2^{-13}C]$ acetate^a


Atom δc Ato	om dc
C-1 37.1s C-1	l6 28⋅3db
C-2 27.8db C-1	17 56·1d [▶]
C-3 74.0d C-1	
(/ 37 Hz)	
C-4 38·2s C-1	l 9 19·3 d
	(J 32 Hz)
C-5 139.7d C-2	20 3 6·2d
(/ 71 Hz)	$(J \ 32 \ Hz)$
C-6 122.7d C-2	21 18·8d
(J 71 Hz)	$(J \ 32 \ Hz)$
C-7 31.9s C-2	22 34·0s
C-8 31.9s C-2	23 26·2d
	(J 36 Hz)
C-9 50·1d C-2	24 45·9d
$(J \ 35 \ Hz)$	(J 35 Hz) ^b
C-10 36.6d C-2	25 29·3da
(J 33 Hz)	
C-11 21.1d C-2	26ª 19·8s
(J 34 Hz)	
C-12 39.8db C-2	27ª 19·1d
C-13 42·4d ^b C-2	28 23·1°
C-14 56.8s C-2	29 11.9c
C-15 24·3s CO	Me 21·4°
CO	Me 170·4℃

^a ¹³C Fourier transform n.m.r. spectra were recorded with a Varian NV-14 spectrometer operating at 15.087 MHz in CDCl₃ using 8-mm spinning tubes at room temperature (30 °C). Accuraties of chemical shifts δ and J values were $ca. \pm 0.1$ p.m. and ± 1 Hz, respectively. ^b J Not exactly determinable owing to signal overlap. ^e Non-enriched ¹³C signals. ^d Assignments of these signals were solely based on consideration of the steric effects of the epimeric ethyl groups at C-24 of this molecule and its C-24 epimer, clionasteryl acetate, upon δ (C-26) (22.7 p.p.m.) and $\delta(C-27)$ (22.9 p.p.m.) of cholesterol,⁴ and are not unambiguous; δ values for C-23 to C-29 of clionasteryl acetate were 26.5, 46.2, 29.1, 19.0, 19.8, 23.1, and 12.4 p.p.m., respectively.

Proton-noise-decoupled ¹³C Fourier transform n.m.r. spectra of β -sitosteryl acetate, for the ¹³C-enriched and unenriched specimens, were compared. The ¹³C signals of the natural-abundance compound were assigned by comparisons with the literature data on cholesterol⁴ (Table). The spectrum of the sample from [4-13C]mevalonic acid clearly shows that the six carbon atoms, C-3, C-5, C-9, C-13,

C-17, and C-24, were enriched by ca. 12 times, while the samples of triterpenes obtained simultaneously from the same source were enriched by ca. 2-5 times as described previously.38. In addition to the enriched 13C singlets due to C-13 and C-17, two satellite peaks split by ¹³C-¹³C spin coupling were observed for each signal as an AB-quartet (135 Hz), arising from incorporation of two labelled isoprene units into vicinal positions in the same molecule of β -sitosterol.

The spectrum of the sample from sodium $[1,2-^{13}C]$ acetate, compared with the natural-abundance spectrum, clearly shows 13 singlets including those due to non-enriched C-28, C-29, and acetyl carbon atoms, and 18 doublets (Table). All the carbon atoms except C-28, C-29, and the acetyl carbon atoms were enriched by ca. 1.4 times, while the spectra of the triterpenes obtained simultaneously had shown ca. 2 times incorporations.^{3b}⁺ The ¹³C-labelled patterns obtained here correspond with the well established biosynthetic pathway from acetate or mevalonate to cholesterol in mammals.⁴ The appearance of singlet signals for C-14 and C-18 is attributable to 1:2 methyl migration from the C-14 to the C-13 position during biosynthesis of squalene oxide to β -sitosterol. This 1:2 methyl migration in cholesterol has been proved recently by feeding experiments with rats using mevalonate.4

-two coupled ¹³C atoms from [1,2–¹³C] MeCO₂H uncoupled ¹³C atom from [1, 2-¹³C] MeCO₂H

In the biosynthesis of the alkyl group at C-24 of phytosterol in higher plants, a 24-ethylidene intermediate formed by double transmethylation from adenosyl methionine is converted into a $\Delta^{24(25)}$ -compound, which is then reduced to give the saturated sterol side chain.⁵ The enriched ¹³C singlet at δ 19.8 p.p.m. and the doublet at 19.1 p.p.m. corresponding to C-26 and C-27 show that these two methyl groups have different origins, the former singlet being derived from C-2 of mevalonate and the latter doublet from C-6. This strongly suggests that the biological alkylation involving migration and reduction of the double bond may proceed stereospecifically, although these two signals could not yet be unambiguously assigned (Table).

(Received, 3rd January 1978; Com. 003.)

 \dagger G.l.c. examination showed that the phytosterol fraction isolated from the tissue cultures consists predominantly of β -sitosterol, a small amount of stigmasterol, and an almost negligible amount of campesterol. Thus, the labelled β -sitosteryl acetate was separated from stigmasteryl acetate by t.l.c. (30% w/w AgNO3 impregnated silica-gel), and recrystallised.

The ratio of incorporation of mevalonate into the sterol to that into the triterpenes (12:5) is apparently different from that for acetate incorporation $(1 \cdot 4 : 2)$.

- ¹ T. W. Goodwin, Biochem. J., 1971, 123, 293.
 ² A. R. Battersby and G. V. Parry, Tetrahedron Letters, 1964, 787; J. K. Sliwowski and E. Caspi, J. Amer. Chem. Soc., 1977, 99, 4479.
 ³ S. Seo, Y. Tomita, and K. Tori, J.C.S. Chem. Comm., 1975 (a) 270; (b) 954.
 ⁴ G. Popják, J. Edmond, F. A. L. Anet, and N. R. Easton, Jr., J. Amer. Chem. Soc., 1977, 99, 931.
 ⁵ P. J. Randall, J. G. Lloyd-Jones, I. F. Cook, H. H. Rees, and T. W. Goodwin, J.C.S. Chem. Comm., 1972, 1296; Y. Tomita and University in the second sec

A. Uomori, ibid., 1970, 1416.