Evidence for a Second Photoactive Excited State in a Tris(β-diketonate)chromium(III) Complex

By Darchun B. Yang and Charles Kutal* (Department of Chemistry, University of Georgia, Athens, Georgia 30602)

Summary Photolysis of trans-tris(1,1,1-trifluoropentane-2,4-dionato)chromium(III) in nonaqueous solvents induces both geometrical isomerization and decomposition, with the quantum efficiency of the latter pathway exhibiting an appreciable solvent dependence.

Previous photochemical studies¹ of $tris(\beta-diketonate)$ -chromium(III) complexes have established the generality of stereochemical rearrangement as an excited-state pathway. We now report the observation of a second photoinduced process, decomposition of the complex, upon irradiation of trans-Cr(tfpd)₃ (tfpdH = 1,1,1,trifluoropentane-2,4-dione) in nonaqueous solvents.

 ${\rm Cr(\hat{t}fpd)_3}$ was prepared and separated into $trans{-}(1)$ and $cis{-}(2)$ isomers by a published procedure.² Irradiation at 254 nm was accomplished with a low-pressure mercury lamp (> 92% output at this wavelength) while a high-pressure mercury lamp with appropriate interference and blocking filters was employed at longer wavelengths. Light intensity was measured by ferrioxalate³ or reineckate⁴

$$CF_3$$
 CF_3 CF_3

actinometry. trans-cis isomerization and decomposition of trans-Cr(tfpd)₃ were monitored by gas chromatography under conditions similar to those employed in an earlier study.²

We have found the photochemical behaviour of trans- $Cr(tfpd)_3$ to be considerably more diverse than that previously reported for $tris(\beta-diketonate)$ chromium(III) complexes.¹ The key observations (Table) may be summarized

TABLE. Photochemical behaviour of trans-Cr(tfpd)₃ (1).

Wavelength irradiated	Benzene		Cyclohexane		Propan-2-ol	
nm	$\phi_{ ext{isom}}$.	φdec.	φisom.	$\phi_{ m dec}$.	$\phi_{ exttt{isom}}$.	φdec.
546	$6.7 \pm 0.6 \times 10^{-4}$	$< 1 \times 10^{-4}$	a	_	-	
408	$8 \cdot 1 + 1 \cdot 1 \times 10^{-4}$	$< \! 2 \! imes \! 10^{-5}$	_		$1.4 \pm 0.04 \times 10^{-3}$	
366	$9.0 + 0.2 \times 10^{-4}$	$< 2 \times 10^{-4}$	$8.8 + 0.7 \times 10^{-4}$	$<$ $6 imes 10^{-6}$	$1.5 \pm 0.1 imes 10^{-3}$	$2.8 \pm 0.5 imes 10^{-4}$
$254^{\rm b}$			$3.2 + 0.1 \times 10^{-3}$	$2 \cdot 2 + 0 \cdot 1 \times 10^{-3}$	$2\cdot 4 \overline{+} 0\cdot 1 imes 10^{-3}$	$2 \cdot 4 + 0 \cdot 1 \times 10^{-2}$
			$2.3 \pm 0.1 \times 10^{-3} \text{ c}$	$6.6 \pm 0.4 \times 10^{-3} \text{ c}$	_	

^a A dash indicates that no data were recorded under the stated conditions. ^b Solutions irradiated at 254 nm were degassed by 3 freeze—thaw cycles. ^c Solution contains a 13-fold excess of the ready hydrogen atom donor, HSnBu^a (see W. Trotter and A. C. Testa, J. Amer. Chem. Soc., 1968, 90, 7044).

as follows. (i) trans to cis isomerization with essentially wavelength-independent quantum yield is the sole detectable process in benzene or cyclohexane solution upon irradiation at wavelengths > 366 nm. (ii) In contrast, both isomerization and decomposition ($\phi_{\text{dec.}}/\phi_{\text{isom.}} = 0.19$) occur at 366 nm in propan-2-ol. (iii) The latter pathway assumes major importance ($\phi_{
m dec.}/\phi_{
m isom.}=0.69$ in cyclohexane and 10 in propan-2-ol) at 254 nm; furthermore, free tfpdH can be detected in the photolyte. (iv) A qualitative correlation exists between $\phi_{\text{dec.}}$ and the hydrogen atom donor ability of the solvent or other species (e.g. HSnBuⁿ₃) present in solution.

Several mechanistic insights emerge from consideration of the above behaviour. The observation of two photoinduced processes with a wavelength-dependent quantum yield ratio $(\phi_{\text{dec.}}/\phi_{\text{isom.}})$ provides the first compelling evidence for the participation of at least two photoactive excited states in a tris(β -diketonate)chromium(III) complex. We associate the strong preference for isomerization at longer wavelengths with the population of the lowest quartet ligand field excited state (${}^{4}A_{1}$ or ${}^{4}E$ if the effective symmetry is D_3). The stereomobility of this state in Cr^{III} complexes is well documented; furthermore, the constancy of ϕ_{isom} implies that the quartet is efficiently populated

via relaxation from higher excited states lying in the 366—546 nm wavelength region.

The sharp increase in $\phi_{\text{dec.}}$ at wavelengths $\leq 366 \text{ nm}$ indicates the presence of a second photoactive state in trans-Cr(tfpd)₃ which favours decomposition. While the identity of this state is not definitively established by our results, the observed photoreactivity suggests that it possesses considerable ligand-to-metal charge transfer character.⁶ This type of photoinduced electron transfer formally generates Cr^{II} bound to a β -diketone radical. In subsequent steps this distorted, and undoubtedly highly reactive species could partition between two competing paths: (A) back electron transfer with regeneration of the original complex or its corresponding isomer, or (B) hydrogen atom abstraction from the solvent (or HSnBuⁿ₃) with resulting decomposition of the trischelate complex. Such behaviour accommodates both the observed increase in øisom. upon irradiation at 254 nm (path A) and the appreciable solvent dependence of $\phi_{\text{dec.}}$ (path B).

We thank the Research Corporation for their partial support of this work.

(Received, 29th December 1977; Com. 1317.)

¹ R. D. Koob, J. Beusen, S. Anderson, D. Gerber, S. P. Pappas, and M. L. Morris, J.C.S. Chem. Comm., 1972, 966; K. L. Stevenson ¹ R. D. Koob, J. Beusen, S. Anderson, D. Gerber, S. P. Pappas, and M. L. Morris, J.C.S. Chem. Comm., 1972, 966; R. L. Stevenson and R. L. Baker, Inorg. Chem., 1976, 15, 1086; S. S. Minor and G. W. Everett, Jr., ibid., p. 1526.

² C. Kutal and R. E. Sievers, Inorg. Chem., 1974, 13, 897.

³ C. G. Hatchard and C. A. Parker, Proc. Roy. Soc., 1956, A, 235, 518.

⁴ E. E. Wegner and A. W. Adamson, J. Amer. Chem. Soc., 1966, 88, 394.

⁵ E. Zinato in 'Concepts of Inorganic Photochemistry,' eds. A. W. Adamson and P. D. Fleischauer, Wiley, New York, 1975, ch. 4.

⁶ R. L. Lintvedt in ref. 5, ch. 7; P. A. Grutsch and C. Kutal, J. Amer. Chem. Soc., 1977, 99, 7397.

⁷ R. G. Pearson, Chem. Phys. Letters, 1971, 10, 31.