Diels-Alder Reaction of o-Benzoquinones with Acyclic Dienes

By Raad Al-Hamdany* and Badie Ali
(Department of Chemistry, University of Mosul, Mosul, Iraq)

Summary Treatment of mono-substituted o-benzoquinones with an excess of 2,3 -dimethylbutadiene, and an oxidising agent, gives the novel bis-Diels-Alder adducts, tetrahydrophenanthrenequinones.

The formation of normal bis-Diels-Alder adducts from o-benzoquinones and acyclic dienes has not been recorded although abnormal 1:2 additions involving a carbonyl group are known. ${ }^{1}$ We report the formation of the normal bis-adducts (2) in the reaction of the 3 -substituted catechols (1) with 2,3-dimethylbutadiene in the presence of an oxidising agent (Table)

2,3-Dimethylbutadiene reacts with 2,3-dihydroxybenzophenone (1c) in the presence of silver oxide and boiling benzene (4.5 h) to give the phenanthrenequinone (2 c) [65% yield, m.p. $138-140{ }^{\circ} \mathrm{C}, M^{+}, m / e 372 \cdot 3$, $\nu_{\max }$ (Nujol) 1730 ($\mathrm{C}=\mathrm{O}$), 1685 (conj. $\mathrm{C}=\mathrm{O}$), and 1670 (conj. $\mathrm{C}=\mathrm{O}$) cm^{-1}; δ $\left(\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right.$ reference) $7 \cdot 76-7 \cdot 38(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7 \cdot 73(1 \mathrm{H}$,
s, $8-\mathrm{H}), 7.21(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 3.98(1 \mathrm{H}, \mathrm{q}, 4 \mathrm{a}-\mathrm{H}), 3.41-\mathrm{l} .52$ $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{l}-\mathrm{and} 4-\mathrm{H}_{2}\right), 2.32(3 \mathrm{H}, \mathrm{s}, 7-\mathrm{Me}), 2 \cdot 24(3 \mathrm{H}, \mathrm{s}, 6-\mathrm{Me})$, $1 \cdot 8(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me})$, and $1 \cdot 65(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{Me})]$.

Table. Addition products of quinones with 2,3-dimethylbutadiene ${ }^{\text {a }}$

Adduct	R	Oxid. agent	M.p. $/{ }^{\circ} \mathrm{C}$	Yield $/ \%$
(2a)	CHO	$\mathrm{Ag}_{2} \mathrm{O}$	$136-138$	$\mathbf{2 5}$
(2b)	COMe	$\mathrm{Ag}_{2} \mathrm{O}$	$85-87$	51
(2c)	COPh	$\mathrm{Ag}_{2} \mathrm{O}$	$138-140$	65
(2d)	$\mathrm{CO}_{2} \mathrm{Me}$	MnO_{2}	$169-171$	78
(2e)	CN	NiO_{2}	$\mathbf{9 8 - 1 0 0}$	$\mathbf{4 3}$

a Reactions were carried out in boiling benzene for $4-5 \mathrm{~h}$. All new compounds gave satisfactory elemental analyses.

Further structural proof for (2d) and (2e) was provided by hydrolysis, which gave the acid ($2 ; \mathrm{R}=\mathrm{CO}_{2} \mathrm{H}$) [54\% yield, m.p. $126-129^{\circ} \mathrm{C}, M^{+}, m / e \mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{4} 312$, $\nu_{\text {max }}$ $\left(\mathrm{CHCl}_{3}\right) 3100(\mathrm{OH}), 1725(\mathrm{C}=\mathrm{O}), 1700(\mathrm{C}=\mathrm{O})$, and 1680 (conj. $\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; n.m.r. $\delta\left(\mathrm{CDCl}_{3}\right) 8 \cdot 33 \mathrm{br}(1 \mathrm{H}$, s, exchangeable, OH) $, 7 \cdot 18(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H}), 7 \cdot 04(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 4 \cdot 02(1 \mathrm{H}, \mathrm{q}$, $4 \mathrm{a}-\mathrm{H}), 3 \cdot 73-\mathrm{l} \cdot 29\left(4 \mathrm{H}, \mathrm{m}, \mathrm{l}-\mathrm{and} 4-\mathrm{H}_{2}\right), 2 \cdot 27 \mathrm{br}(6 \mathrm{H}, \mathrm{s}, 6-\mathrm{and}$ $7-\mathrm{Me}), 1.69(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me})$, and $1.57(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{Me})]$. This acid was then decarboxylated and aromatised (refluxing toluene; $\mathrm{Ag}_{2} \mathrm{O} ; 4 \mathrm{~h}$) to give 2,3,6,7-tetramethylphenanthrenequinone (3) as a pale red powder [57\% yield, m.p. 178 $180^{\circ} \mathrm{C}, \nu_{\text {max }} .\left(\mathrm{CHCl}_{3}\right) 1690(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ; \delta\left(\mathrm{CDCl}_{3}\right) 7 \cdot 28(4 \mathrm{H}$, s, ArH) and $2.35(12 \mathrm{H}, \mathrm{s}, 2-, 3-, 6-$ and $7-\mathrm{Me})]$.

We suggest a mechanism involving Diels-Alder addition to the quinone at the C-5-C-6 double bond, tautomerisation to a diol, oxidation to an o-naphthoquinone, and further addition.

We thank Dr. J. Ollson for 100 MHz n.m.r. and mass spectral measurements.
(Received, 8th August 1977; Com. 820.)

[^0]
[^0]: ${ }^{1}$ M. F. Ansell and A. J. Bignold, Chem. Comm., 1970, 989; L. Horner and Merz, Annalen, 1950, 570, 89; M. F. Ansell and V. J. Leslie, J. Chem. Soc. (C), 1971, 1423.

