Diels-Alder Reaction of o-Benzoquinones with Acyclic Dienes

By RAAD AL-HAMDANY* and BADIE ALI

(Department of Chemistry, University of Mosul, Mosul, Iraq)

Summary Treatment of mono-substituted o-benzoquinones with an excess of 2,3-dimethylbutadiene, and an oxidising agent, gives the novel bis-Diels-Alder adducts, tetrahydrophenanthrenequinones.

THE formation of normal bis-Diels-Alder adducts from o-benzoquinones and acyclic dienes has not been recorded although abnormal 1:2 additions involving a carbonyl group are known.¹ We report the formation of the normal bis-adducts (2) in the reaction of the 3-substituted catechols (1) with 2,3-dimethylbutadiene in the presence of an oxidising agent (Table).

2,3-Dimethylbutadiene reacts with 2,3-dihydroxybenzophenone (1c) in the presence of silver oxide and boiling benzene (4.5 h) to give the phenanthrenequinone (2c) [65% yield, m.p. 138—140 °C, M^+ , m/e 372·3, ν_{max} (Nujol) 1730 (C=O), 1685 (conj. C=O), and 1670 (conj. C=O) cm⁻¹; δ (CDCl₃, Me₄Si reference) 7.76—7.38 (5H, m, Ph), 7.73 (1H,

s, 8-H), 7·21 (1H, s, 5–H), 3·98 (1H, q, 4a-H), $3\cdot41$ —1·52 (4H, m, 1- and 4-H₂), 2·32 (3H, s, 7-Me), 2·24 (3H, s, 6-Me), 1·8 (3H, s, 2-Me), and 1·65 (3H, s, 3-Me)].

TABLE.Addition products of quinones with2,3-dimethylbutadienea

Adduct	R	Oxid. agent	M.p./°C	Yield/%
(2a)	CHO	$Ag_{2}O$	136 - 138	25
(2b)	COMe	$Ag_{2}O$	85 - 87	51
(2c)	COPh	Ag ₂ O	138 - 140	65
(2d)	CO ₂ Me	MnO ₂	169 - 171	78
(2e)	CN	NiO ₂	98-100	43

^a Reactions were carried out in boiling benzene for 4-5 h. All new compounds gave satisfactory elemental analyses.

Further structural proof for (2d) and (2e) was provided by hydrolysis, which gave the acid (2; $R = CO_2H$) [54% yield, m.p. 126—129 °C, M^+ , $m/e \ C_{19}H_{20}O_4$ 312, ν_{max} . (CHCl₃) 3100 (OH), 1725 (C=O), 1700 (C=O), and 1680 (conj. C=O) cm⁻¹; n.m.r. δ (CDCl₃) 8·33br (1H, s, exchangeable, OH), 7·18 (1H, s, 8-H), 7·04 (1H, s, 5-H), 4·02 (1H, q, 4a-H), 3·73—1·29 (4H, m, 1- and 4-H₂), 2·27br (6H, s, 6- and 7-Me), 1·69 (3H, s, 2-Me), and 1·57 (3H, s, 3-Me)]. This acid was then decarboxylated and aromatised (refluxing toluene; Ag₂O; 4h) to give 2,3,6,7-tetramethylphenanthrenequinone (3) as a pale red powder [57% yield, m.p. 178— 180 °C, ν_{max} . (CHCl₃) 1690 (C=O) cm⁻¹; δ (CDCl₃) 7·28 (4H, s, ArH) and 2·35 (12H, s, 2-, 3-, 6- and 7-Me)].

We suggest a mechanism involving Diels-Alder addition to the quinone at the C-5--C-6 double bond, tautomerisation to a diol, oxidation to an o-naphthoquinone, and further addition.

We thank Dr. J. Ollson for 100 MHz n.m.r. and mass spectral measurements.

(Received, 8th August 1977; Com. 820.)

¹M. F. Ansell and A. J. Bignold, Chem. Comm., 1970, 989; L. Horner and Merz, Annalen, 1950, 570, 89; M. F. Ansell and V. J. Leslie, J. Chem. Soc. (C), 1971, 1423.