Journal of

The Chemical Society,

Chemical Communications

NUMBER 1/1979 3 JANUARY

Determination of the Solution 0-0 Stretching Frequency of a Monomeric Dioxygen Cobalt Complex by Resonance Rarnan Spectroscopy

By THOMAS **SZYMANSKI, THOMAS** W. CAPE, RICHARD P. **VAN** DUYNE,* and FRED **BASOLO*** *(Department of Chemistry, Northwestern University, Evanston, Illinois* **60201)**

Summary The observation of the first *0-0* stretching frequency in a mononuclear cobalt dioxygen complex in **pyridine-NN-dimethylformamide** solution by resonance Raman spectroscopy is reported.

THE reversible reaction of dioxygen with solutions of neutral cobalt complexes of the type Co(tetradentate ligand) (B) $(B =$ Lewis base such as pyridine) to produce the monomeric dioxygen complexes, Co(tetradentate ligand)- $(B)(O₂)$, which serve as model systems for haemoglobin has been known for many years.^{1,2} The O-O stretching frequency (v_{0-0}) in these compounds as well as other physical evidence has been generally accepted² as indicating charge-transfer from the cobalt to the dioxygen to produce a species of the type $Co^{III}-O₂$. In the majority of cases the v_{0-0} has been determined by i.r. spectroscopy in the solid state³ although a report has recently appeared of a determination of **vo-0** in solution by Fourier transform i.r. spectroscopy.* We note that Raman spectroscopy has been used to probe some solid binuclear μ -superoxo complexes, $Co^H = O₂ - CO^H$.⁵ Others have also examined aqueous solutions and solids of the analogous μ -peroxo derivatives, $Co^{III}-O₂²-CO^{III}$, and have noted resonance enhancement in some instances.⁶ Although previous attempts to determine v_{0-0} by Raman spectroscopy in mononuclear systems have proved unsuccessful, Brunner' was able to determine $v_{\text{Fe}-0}$ (567 cm⁻⁻¹) in oxyhaemoglobin and Spiro *et al.*⁸ recently reported $v_{\text{Fe}-0}$ (568 cm⁻¹) for the 'picket fence' porphyrin FeO₂ adduct. We now report what appears to be the first successful application of resonance Raman (R.R.) spectroscopy to determine the solution *0-0* stretching frequency of a monomeric dioxygen cobalt complex, **7,8,15,16,17,18-hexahydro-3,12-dinitrobenzo[e,m][l,4,8,11]tetra-azocyclotetradecinatocobalt (11)** (I), in pyridine (py)-dimethylformamide (DMF) solution **(lo%,** v/v).

 (I)

Compound (I) was prepared by the method of Carter,^{θ} following the procedure outlined by Black and Lane.¹⁰ It was chosen for this study because the addition of O_2 to a py-DMF solution of (I) produces a marked change in its electronic spectrum. The monomeric dioxygen complex has an absorption maximum at **4900** A which makes it an ideal system for R.R. spectroscopy, 11 when irradiated with the 4880 Å Ar⁺ laser line.

Samples of (I) were prepared in 5 mm n.m.r. tubes under rigorously anaerobic conditions by standard Schlenkware techniques.¹² The absence of O_2 was verified by e.s.r. spectroscopy 6 ⁺ using the method described previously.¹³

 τ Deoxygenated solutions of (I) have the following e.s.r. parameters: $g_x = 2.303$, $g_y = 2.219$, $g_a = 2.007$, $a_x^{\text{CO}} = 112.06$, $a_x^{\text{N}} = 112.06$ 15.0. The oxygenated compounds have the following e.s.r. parameters: $g_{\parallel} = 1.996$, $g_{\perp} = 2.082$, $A_{\parallel}^{\text{co}} = 18.3$.

The R.R. spectra were obtained using saturated solutions of (I) at -80 ± 0.1 °C. This was accomplished by spinning the samples in a low temperature apparatus and using backscattering geometry,¹⁴ on an instrument that has been previously described.15

FIGURE. Raman spectra of saturated solution of **(A)** (I) (band pass **2.1** cm-1; power **50** mW; counting interval **1.0** s; scan rate, 0.2500 Å s⁻¹), (B) (I) + ¹⁸O₂ (band pass 2.1 cm⁻¹; power 45 mW; counting interval 9.0 s; scan rate 0.0125 Å s⁻¹), and (C) (I) + ¹⁸O₂ (band pass 2.1 cm⁻¹; power 45 mW; counting interval 4.0 s; scan rate 0.0 **4880** A excitation.

The R.R. spectrum of (I) in **10%** py-DMF (v/v) is shown in the Figure (A). The addition of $^{16}O_2$ produces a new band at **1137** cm-1 which is shown in the Figure (C). The substitution of $94\frac{9}{6}$ ¹⁸O₂ for ¹⁶O₂ causes the O-O stretch to shift to **1078** cm-l, as can be seen in the Figure (B and *C).*

The surprising feature of the $^{18}O_2$ spectrum is that the integrated intensity of the **1078** cm-1 band is only **21%** of the 1137 cm^{-1} band in the $^{16}O_2$ spectrum. The presence of residual $^{16}O_2$ can be seen as a weak feature in the $^{18}O_2$ spectrum at 1137 cm^{-1} . An excitation profile of (1) in 10% py-DMF with **1602** and **ISO2** mas performed using **4579, 4765, 4880, 4965,** and **5145** A exciting lines. The intensities of the two bands that we have assigned to v_{0-0} varied as a function of exciting line, but in no instance did the intensity of the $^{18}O_2$ band approach that of its $^{16}O_2$ counterpart. In all cases the completeness of oxygenation was verified by e.s.r. spectroscopy.[†] It is noteworthy that we never observed any new vibrational features in the peroxo region 800-**960** cm-l. We thus assign this **1137** cm-l band to **vo-0** in this complex. This observation of v_{0-0} at 1137 cm⁻¹ is in accord with the formalism Co^{III}-O₂⁻, since this frequency corresponds closely with the 1141 cm⁻¹ band assigned to v_{0-0} in $KO₂¹⁶$ and is in good agreement with previously obtained superoxo stretching frequencies. $1-4$

Our repeated observation of weak R.R. scattering at 1078 cm^{-1} for the $^{18}O_2$ adduct relative to stronger R.R. scattering at 1137 cm^{-1} for the $^{16}O_2$ adduct suggests that this observation, while somewhat anomalous, is in fact real. Anomalous i.r. intensity and Raman frequency for some ¹⁸O enriched compounds compared to their ¹⁶O analogues has been previously reported.17 However, the i.r. intensity differences for *180* substitution are always less than a factor of two, while the Raman intensity difference reported here is about a factor of five. Furthermore, anomalous Raman intensity changes for l8O substitution have not been previously reported. The axial base on the cobalt dioxygen complex was changed from pyridine to N-methylimidazole. As a result of this substitution, a decrease in the intensity of the $^{16}O-^{16}O$ stretch by a factor of two relative to the other $Co(NO₂Cyen)$ bands was observed. There is no vibrational band in the **600-400** cm-l region in either system that shows a frequency dependence upon substitution of $^{18}O_2$, and hence no band which could be assigned to the Co-O stretch. In the work⁸ on the 'picket fence' porphyrin iron dioxygen adduct, the FeO band shifted 23 cm⁻¹ upon substitution of $^{18}O_2$ for $^{16}O_2$.

We thank Professors D. F. Shriver and D. P. Rillema for helpful discussions. This research was supported by grants from the National Science Foundation and the National Institutes of Health.

(Received, 18th Jdy **1978; Coiiz. 771.)**

¹F. Basolo, €3. M. Hoffman, and J. **A.** Ibers, *Accounts Chem. Res.,* **1975, 8, 384;** J. P. Collman, *ibid.,* **1977, 10, 265.**

-
- ² L. Vaska, Accounts Chem. Res., 1976, 9, 175.
³ C. Floriani and L. Calderazzo, *J. Chem. Soc.* (A), 1969, 946; A. L. Crumbliss and F. Basolo, *J. Amer. Chem. Soc.*, 1970, 92, 55.
- 4 J. P. Collman, J. C. Brauman, J. R. Hulbert, and K. S. Suslick, Proc. Nat. Acad. Sci. U.S.A., 1976, 73, 333.
⁵ T. Shibahara, *J.C.S. Chem. Comm.*, 1973, 864.
-
- T. B. Freedman, *C.* M. Yoshida, and T. M. Loehr, *J.C.S. Chewz. Coinnz.,* **1974, 1016.**
-
- ⁷ H. Brunner, *Naturwiss.*, 1974, 61, 129.
⁸ J. M. Burke, J. R. Kincaid, S. Peters, R. R. Gagne, J. P. Collman, and T. G. Spiro, *J. Amer. Chem. Soc.*, 1978, 100, 6083.
⁹ M. J. Carter, Ph.D. Thesis, Northwestern Univ
-
- **M. J. Carter, Ph.D. Thesis, Northwestern University, 1973.**

¹⁰ D. St. C. Black and M. J. Lane, *Austral. J. Chem.*, 1970, **23**, 2039.

¹¹ T. G. Spiro, *Accounts Chem. Res.*, 1974, 7, 339.
-
- ¹² D. F. Shriver, 'The Manipulation of Air-Sensitive Compounds,' McGraw-Hill, New York, 1969.
- B. N. Hoffman, D. L. Diemente, and F. Basolo, *J. Amer. Chem. SOC.,* **1970,** *92,* **61.**
-
- l4 D. F. Shriver and J. B. R. Dunn, *Appl. Spectvoscopy,* **1974, 28, 319. 15 D.** L. Jeanmaire, M. R. Suchanski, and R. P. Van Duyne, *J. Amer. Chem. Soc.,* **1975,** *97,* **1699.**
-

18 D. Holzer, W. F. Murphy, H. J. Bernstein, and J. Folfe, *J. Mol. Spectroscopy*, 1968, 26, 543.
¹⁸ W. Holzer, W. F. Murphy, H. J. Bernstein, and J. Folfe, *J. Mol. Spectroscopy*, 1968, 26, 543.
¹⁷ S. Pinchas and I. L therein.

