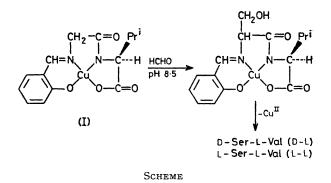
Stereoselective Reaction of Formaldehyde with N-Salicylideneglycyl-Lvalinatocopper(II)


By SHINNICHIRO SUZUKI, HIDEYUKI NARITA, and KAORU HARADA* (Department of Chemistry, The University of Tsukuba, Ibaraki, 300-31 Japan)

Summary The glycine residue in N-salicylideneglycyl-Lvalinatocopper(II) reacts with formaldehyde in aqueous solution at pH 8.5 and the resulting complex gives seryl-L-valine containing optically active serine.

The chemical reactivity of glycine (Gly) co-ordinated to Cu^{11} with various aldehydes in alkaline aqueous solutions has been studied by many workers.¹ These reactions give rise to β -hydroxy- α -amino-acids. Similar reactions of glycylglycine² and glycylglycylglycine³ in the presence of Cu^{11} with aldehydes also yield oligopeptides containing *N*-terminal β -hydroxy-amino-acids.

We report here on the sterically controlled reaction of the Gly residue in N-salicylideneglycyl-L-valinatocopper(II) (I) with formaldehyde. The new N-terminal serine residue in the product, seryl-L-valine (Ser-L-Val), might be expected to be optically active as a result of asymmetric induction owing to the vicinal effect of the isopropyl group of the L-valine residue in (I).

A mixture of $(I)^{\dagger}$ (5.2 \times 10⁻⁵ M) and sodium hydrogen carbonate $(1 \times 10^{-3} \text{ M})$ was dissolved in water (30 ml) and the precipitated barium hydrogen carbonate was removed by filtration. To this filtrate (pH 8.5) was added aqueous formaldehyde (6 \times 10⁻³ M) and the mixture was heated

at 45 and at 80 °C. After completion of the reaction, the resulting complex was decomposed by H_2S gas at pH 2 and then the acidic solution was treated with a Dowex-50 cation exchange resin. The reaction products, two diastereoisomers of Ser-L-Val, and unchanged Gly-L-Val were analysed by an amino acid analyser.

The results obtained are shown in the Table. The yields of Ser-L-Val increase with reaction time at 45 °C; however, the optical purities of the D-Ser residue decreased from 11 to 5%. In the reactions at 80 °C, the yields of the

 $Ba_{0.6}$ [Cu(Sal=Gly-L-Val)]·3·5 H₂O: the violet crystals were prepared from bis-salicylaldehydecopper(II) and Gly-L-Val; C₁₄H₂₂-Ba_{0.6}CuN₂O_{7.5}: satisfactory analytical data were obtained.

TABLE. Results of the reaction of (I) with formaldehydea

	Time/h	Ser_L-Val/%		Optical purity of		Recovery of
Temp./°C		D-L	L-L	Serb/%	'% HMSVº/%	Gly_L-Val/%
45	12	8.9	7.2	11		70.8
	25	17.7	14.4	10		26.4
	50	28.8	$25 \cdot 3$	6.5	2	18.5
	75	29.3	$26 \cdot 3$	5.4	2	10.3
	100	35.6	$32 \cdot 2$	5.0	4	8.1
80	1	15.5	$13 \cdot 2$	8.0		72.0
	2	24.6	22.7	4.0	0.7	51.8
	4	32.7	$32 \cdot 1$	0.9	2	23.5
	6	39.1	$39 \cdot 2$	0.1	4	13.7
	12	32.0	38.4	$9 \cdot 1$	10	1.8
	25	16.0	$22 \cdot 4$	16.7	20	trace
	50 ^d	1.9	$2 \cdot 9$	21	25	trace

Analysis: Yanagimoto amino acid analyser LC-5S, column: 0.8 × 50 cm, resin: cation exchange resin SCX 1001, elution buffer: pH 4.25 citrate buffer. b Optical purity = $|(D-L - L-L)/(D-L + L-L)| \times 100\%$. ° α -Hydroxymethylseryl-L-valine. ^d No racemization of the L-Val residue.

products increase up to 78.3% after 6 h and then decrease gradually. The ratio of the two diastereoisomers of Ser-L-Val depends on the reaction time. Excess of D-Ser-L-Val present in the initial stages of the reaction is changed into an excess of L-Ser-L-Val after at least 6 h. The epimerization of the Ser residue from the D- to L-isomer at 80 °C

could be explained by a first-order asymmetric transformation. If this is the case, the reaction of (I) with formaldehyde would be kinetically as well as thermodynamically controlled.

(Received, 18th September 1978; Com. 999.)

- M. Sato, K. Okawa, and S. Akabori, Bull. Chem. Soc. Japan, 1957, 30, 937; T. Ichikawa, S. Maeda, T. Okamoto, Y. Araki, and Y. Ishido, *ibid.*, 1971, 44, 2779; S. Akabori, T. T. Otani, R. Marshall, M. Winits, and J. P. Greenstein, Arch. Biochem. Biophy., 1959, 83, 1; K. Harada and J. Oh-hashi, J. Org. Chem., 1967, 32, 1103.
 K. Noda, M. Bessho, T. Kato, and N. Izumiya, Bull. Chem. Soc. Japan, 1970, 43, 1834.
 M. Fujioka, Y. Nakao, and A. Nakahara, J. Inorg. Nuclear Chem., 1977, 39, 1885.