Conformational Equilibrium in 4-Methylpiperidine

By HAROLD BOOTH and JEREMY R. EVERETT (Department of Chemistry, The University of Nottingham, Nottingham NG7 2RD)

Summary Measurements at three low temperatures of the pulse Fourier transform ¹³C n.m.r. spectrum of 4-methyl-

piperidine, enriched with ${}^{13}C$ in the methyl substituent, show that the conformational free energy difference

 $(-\Delta G^{\circ})$ of the methyl group is 1.93 ± 0.02 kcal mol⁻¹ $(8.07 \pm 0.08 \text{ kJ mol}^{-1}).$

A COMPARISON of the conformational free energy difference of a substituent in cyclohexane, with that of the same substituent in piperidine, is of considerable interest. The $-\Delta G^{\circ}$ value of 1.74 kcal mol⁻¹ for the methyl group in methylcyclohexane, obtained by a direct method,¹ contrasts remarkably with that of 2.7 kcal mol⁻¹ obtained indirectly for the N-methyl substituent in the N-methylpiperidine (1**⇒2**).²

We have now applied the direct low-temperature method successfully to $4-[Me^{-13}C]$ methylpiperidine ($3 \rightleftharpoons 4$), synthesised from 1-benzyl-4-piperidone through a Wittig reaction with $[Me^{-13}C]$ methyltriphenylphosphonium iodide, followed by hydrogenation and debenzylation. The noise-decoupled ¹³C spectrum of (3 = 4), recorded at 173 K in CFCl₃-CDCl₃ (90:10 v/v) showed the enriched carbon at δ 23.03 (Me

equatorial) and 17.03 p.p.m. (Me axial). The latter signal broadened at 183 K and was absent at higher temperatures. In the same spectrum the natural abundance ¹³C carbon atoms of (4) gave signals at δ 46.7 [C-2 and -6, d, ${}^{3}J({}^{13}C-{}^{13}C)$ 3.8 Hz], δ 35.17 (C-3 and -5, s), and δ 31.60 [C-4, d, $^{1}J(^{13}C-$ ¹³C) 35.0 Hz[†]]. Experimental conditions were chosen to ensure that signal areas reflected accurately the corresponding molecular proportions.³ Spectra were recorded at 173, 162, and 153 K and the corresponding values of the equilibrium constant K were found to be 295, 418, and 544, respectively.[‡] A plot of $\ln K$ against T^{-1} , incorporating the theoretical data pair $\ln K = 0$, $T^{-1} = 0$, (*i.e.* on the reasonable assumption that $\Delta S^{\circ} = 0$ gave $-\Delta H^{\circ}$ (and therefore $-\Delta G^{\circ}$) as 1.93 \pm 0.02 kcal mol⁻¹. Thus the methyl group in 4-methylpiperidine shows a reduced preference for the axial orientation, in comparison with the methyl in methylcyclohexane. Classical conformational analysis provides a reasonable, if oversimplified, explanation. The shortness of the C-N bonds, in comparison with the C-C bonds, causes the piperidine ring to be puckered around the nitrogen atom. As a consequence, the axial C-H bonds at C-2 and -6 are inclined inwards, causing the attached hydrogen atoms to suffer increased repulsions with an axial group at C-4. A similar explanation has been proposed to account for observed equilibria in decahydroquinolines⁴ and in dialkylpiperidines.⁵

Interestingly, the $-\Delta G^{\circ}$ value of 1.93 kcal mol⁻¹ for 4-methylpiperidine is in good agreement with that of 1.98 kcal mol⁻¹ obtained for 1,4-dimethylpiperidine (in dodecane) by the indirect method of Robinson,⁶ who has developed a technique for rapid, irreversible protonation which is much superior to that originally employed.7

(Received, 2nd October 1978; Com. 1044.)

† Measured at 183 K.

[‡] Measurements at 25·15 MHz used a JEOL P.S. 100 spectrometer interfaced to a NICOLET 1085 20 K 20-bit computer.

¹ H. Booth and J. R. Everett, J.C.S. Chem. Comm., 1976, 278.

- ² P. J. Crowley, M. J. T. Robinson, and M. G. Ward, J.C.S. Chem. Comm., 1974, 825; Tetrahedron 1977, 33, 915; see also D. C. Appleton, J. McKenna, J. M. McKenna, L. B. Sims, and A. R. Walley, J. Amer. Chem. Soc., 1976, 98, 292.
 ³ Cf. H. Booth and M. L. Jozefowicz, J.C.S. Perkin II, 1976, 895.
 ⁴ H. Booth, D. V. Griffiths, and M. L. Jozefowicz, J.C.S. Perkin II, 1976, 751.

 - ⁵ E. L. Eliel and D. Kandasamy, Tetrahedron Letters, 1976, 3765.
 - ⁶ M. J. T. Robinson, J.C.S. Chem. Comm., 1975, 844.
 - 7 H. Booth, Chem. Comm., 1968, 802.