## Synthesis and <sup>17</sup>O N.M.R. Structure Determination of a $\eta$ -Cyclopentadienyl Titanomolybdate, $[(\eta - C_5H_5)Ti(Mo_5O_{18})]^{3-}$

By WALTER G. KLEMPERER\* and WILFRED SHUM

(Department of Chemistry, Columbia University, New York, New York 10027)

Summary Reaction of  $[(\eta - C_5H_5)_2 \text{TiCl}_2]$  with  $(\text{Bu}\,^n_4\text{N})_2^ [\text{Mo}_2\text{O}_7]$  and water in  $\text{CH}_2\text{Cl}_2$  yields  $(\text{Bu}\,^n_4\text{N})_3[(\eta - C_5H_5)\text{Ti}(\text{Mo}_5\text{O}_{18})]_3^ (\text{Mo}_5\text{O}_{18})]$ , shown to contain the  $[(\eta - C_5H_5)\text{Ti}(\text{Mo}_5\text{O}_{18})]^{3-}$ anion which is related to the octahedral  $\text{Mo}_6\text{O}_{19}^{2-}$  anion by replacement of an  $[\text{Mo}^{v_1}\text{O}]^{4+}$  sub-unit by  $[\text{Ti}^{1v} - (\eta - C_5H_5)]^{3+}$ .

THE unusual stability of the recently reported  $\alpha - [(\eta - C_8 H_5) - Ti(PW_{11}O_{39})]^{4-}$  anion<sup>1</sup> has prompted us to attempt the synthesis of related compounds which contain the same organometallic sub-unit bonded to different polyoxoanion clusters. The complex described here, the  $[(\eta - C_5 H_5) Ti - (Mo_5 O_{18})]^{3-}$  anion, demonstrates the critical role of the polyoxoanion ligand in determining the stability of polyoxoanion supported organometallics.

The  $[(\eta - C_5H_5)Ti(MO_5O_{18})]^{3-}$  anion is synthesized as a

$$2[(\eta - C_5 H_5)_2 \text{TiCl}_2] + 5[\text{Mo}_2 O_7]^{2-} + H_2 O \rightarrow 2[(\eta - C_5 H_5) \text{Ti}(\text{Mo}_5 O_{18})]^{3-} + 4\text{Cl}^- + 2\text{C}_5 H_6$$
(1)

tetrabutylammonium salt according to equation (1). Slow addition of  $[(\eta-C_5H_5)_2\text{TiCl}_2]$  in dry  $\text{CH}_2\text{Cl}_2$  to a dry  $\text{CH}_2\text{Cl}_2$ solution of  $(\text{Bu}^n_4\text{N})_2[\text{Mo}_2\text{O}_7]^{2-}$  followed by addition of moist toluene and slow evaporation of solvent in an argon atmosphere yields crystalline, solvated product. These crystals, upon drying *in vacuo*, crumble to a yellow powder formulated as  $(\text{Bu}^n_4\text{N})_3[(\eta-C_5H_5)\text{Ti}(\text{Mo}_5\text{O}_{18})]$  (1) according to elemental analysis and the relative intensities (1:5·4) of <sup>1</sup>H n.m.r. resonances in CD<sub>2</sub>Cl<sub>2</sub> for the C<sub>5</sub>H<sub>5</sub> protons and the counterion N-CH<sub>2</sub> protons.

The structure of the  $[(\eta-C_5H_5)Ti(Mo_5O_{18})]^{3-}$  anion shown in Figure (a) is proposed on the basis of the completely resolved <sup>17</sup>O n.m.r. spectrum shown in Figure (c). The spectral assignments given in the Table and Figure (c) were obtained by comparison of the spectrum of (1) with the spectrum of  $(Bun_4N)_3[VMo_5O_{19}]^{\dagger}$  which contains the structurally related  $[VMo_5O_{19}]^{3-}$  anion [see Figure (b) and

 TABLE.
 13.5 MHz <sup>17</sup>O Pulse Fourier transform n.m.r. chemical shift data

|                                                                                                           | Chemical shifts <sup>a</sup> |            |                     |                   |                 |  |
|-----------------------------------------------------------------------------------------------------------|------------------------------|------------|---------------------|-------------------|-----------------|--|
| Anion                                                                                                     | ov                           | ОМо        | OMoV<br>or<br>OMoTi | OMo <sub>2</sub>  | OM <sub>6</sub> |  |
| [M0 <sub>6</sub> O <sub>19</sub> ] <sup>2- b</sup><br>[VM0 <sub>6</sub> O <sub>19</sub> ] <sup>3- c</sup> | 1200ª                        | 927<br>885 | 665 a               | 559<br>541<br>531 | $-32 \\ -22$    |  |
| [(η-C <sub>5</sub> H <sub>5</sub> )Ti-<br>(Mo <sub>5</sub> O <sub>18</sub> )] <sup>3- e</sup>             |                              | 863<br>834 | 641                 | $535 \\ 516$      | 5               |  |

<sup>a</sup> Positive chemical shift in p.p.m. downfield from pure  $H_2O$  at 25 °C,  $\pm 3$  p.p.m. unless otherwise indicated. <sup>b</sup> Data from ref. 3. <sup>c</sup> (Bu<sup>n</sup><sub>4</sub>N)<sub>8</sub>[VMo<sub>5</sub>O<sub>19</sub>], 10% <sup>17</sup>O, 0.08 M in MeCN at 80 °C. <sup>d</sup>  $\pm 5$  p.p.m. <sup>e</sup> (Bu<sup>n</sup><sub>4</sub>N)<sub>8</sub>[( $\eta$ -C<sub>8</sub>H<sub>8</sub>)Ti(Mo<sub>5</sub>O<sub>18</sub>)], 19% <sup>17</sup>O, 0.23 M in MeCN at 25 °C.



FIGURE. (a) Proposed structure of  $[(\eta-C_5H_5)Ti(Mo_5O_{18})]^{3-}$  and (b) structure of  $[VMo_5O_{19}]^{3-}$ . One member of each symmetry equivalent set of oxygen atoms is labelled, assuming free rotation of the  $C_5H_5$  ligand in (a). This labelling is used to assign resonances in the <sup>17</sup>O n.m.r. spectra of (c)  $[(\eta-C_5H_5)Ti(Mo_5O_{18})]^{3-}$  and (d)  $[VMo_5O_{19}]^{3-}$ . The asterisk in (c) identifies a resonance arising from a small amount of sample decomposition. See Table for spectral data.

(d)]. Although the  $O_B$  and  $O_C$  resonances for (1) cannot be uniquely assigned to the 535 and 516 p.p.m. resonances, the  $O_E$  and  $O_F$  resonances can be uniquely assigned using intensity arguments. The resonances for the  $[VMo_5O_{10}]^{3-}$ 

† Prepared by stoicheiometric addition of methanolic  $\operatorname{Bu}_4^n \operatorname{NOH}$  to  $\operatorname{V}_2O_5$  and  $\alpha$ -( $\operatorname{Bu}_4^n\operatorname{N}_4[\operatorname{Mo}_8O_{26}]$  in MeCN. Elemental analysis and i.r. spectroscopy in the 650—1000 cm<sup>-1</sup> region show that this compound contains the  $[\operatorname{VMo}_5O_{19}]^{3-}$  anion which is isostructural with the  $[\operatorname{VW}_5O_{19}]^{3-}$  anion: C. M. Flynn, Jr. and M. T. Pope, *Inorg. Chem.*, 1971, 10, 2524.

anion were assigned using chemical shift data for the [Mo<sub>6</sub>O<sub>19</sub>]<sup>2-</sup> anion<sup>3</sup> (see Table), following the same procedures as previously described<sup>4</sup> to assign the resonances for the [VW5019]<sup>3-</sup> anion.

In contrast with the  $\alpha\text{-}[(\eta\text{-}\mathrm{C}_5\mathrm{H}_5)\mathrm{Ti}(\mathrm{PW}_{11}\mathrm{O}_{29})]^{4-}$  anion, the  $[(\eta - C_5H_5)Ti(Mo_5O_{18})]^{3-}$  anion is decomposed by atmospheric moisture in the solid or solution state. Since the titanium co-ordination geometry is very similar in the two complexes, this difference in stability cannot be attributed to steric factors at the titanium site.

(Received, 14th August 1978; Com. 885.)

<sup>1</sup> R. K. C. Ho and W. G. Klemperer, J. Amer. Chem. Soc., 1978, 100, 6772.
 <sup>2</sup> V. W. Day, M. F. Fredrich, W. G. Klemperer, and W. Shum, J. Amer. Chem. Soc., 1977, 99, 6146.
 <sup>3</sup> M. Filowitz, W. G. Klemperer, L. Messerle, and W. Shum, J. Amer. Chem. Soc., 1976, 98, 2345.
 <sup>4</sup> W. G. Klemperer and W. Shum, J. Amer. Chem. Soc., 1978, 100, 4891.