## Electronic Spectra and Geometries of HgX<sub>3</sub> in Water

By TREVOR R. GRIFFITHS\* and RICHARD A. ANDERSON

(Department of Inorganic and Structural Chemistry, The University, Leeds LS2 9 [T]

Summary The electronic spectra, in the visible and u.v. regions, of  $HgX_3^-$  (X = Cl, Br, or I) have for the first time been obtained, by a computer technique, free from any contributions of  $HgX_2$  or  $HgX_4^{2-}$ , and the resolved bands are assigned and permit identification of  $HgCl_3^-$  as planar with  $D_{3h}$  symmetry, and  $HgI_3^-$  as pyramidal, with  $C_{3v}$  symmetry, which suggests that the solvated species are trigonal-bipyramidal and tetrahedral, respectively;  $HgBr_3^-$  has possibly intermediate or pyramidal geometry.

SOLIDS of formula  $MHgX_3$  are known (M = univalent cation, X = Cl, Br, or I) but in the case of chlorides HgCl<sub>3</sub><sup>--</sup> is not present.<sup>1</sup> For bromides the structure is intermediate between HgBr<sub>3</sub>- chains and individual ions having trigonal structure.<sup>2</sup> For iodides an approximately trigonal-planar structure is also found.<sup>3</sup> Attempts to elucidate the structure of the trihalides in aqueous solution are hampered<sup>4</sup> because these anions disproportionate, and addition of X<sup>-</sup> to HgX<sub>2</sub> never yields exclusively HgX<sub>3</sub><sup>-</sup>. Thus no definitive Raman studies have been performed on  $HgX_3^-$  in water. To date a tetrahedral species  $[HgBr_3(OH_2)]^-$  has been postulated in solution to explain why the observed entropy of  $\mathrm{HgBr}_4^{2-}$  exceeds that of the tribromo species, when the calculated entropies show the reverse.<sup>5</sup> Gallagher and King<sup>6</sup> found the entropy of the trichloro species best explained by the configuration  $[HgCl_3(H_2O)_3]^-$ . X-Ray diffraction studies of the trichloro species suggests<sup>4</sup> a pentagonal bipyramid with the chlorine atoms co-planar [HgCl<sub>3</sub>(H<sub>2</sub>O)<sub>2</sub>]<sup>-</sup>, though this is uncertain since the solutions could not be obtained free from HgCl<sub>2</sub> or HgCl<sub>4</sub><sup>2-</sup>.

We have measured the electronic spectra of the system  $HgX_2$  with added halide. At X:Hg mole ratios of just over 2:1 to 20:1,  $HgX_2$  and  $HgX_3^-$  were present; at greater ratios,  $HgX_4^{2-}$  was also present. Further halide addition soon resulted in a two-species equilibrium, between  $HgX_3^-$  and  $HgX_4^{2-}$ , up to a mole ratio of *ca*. 200:1 after which essentially only  $HgX_4^{2-}$  was present in solution. As isosbestic points were at times observed, we were able to compute, and then resolve, the discrete spectrum for each of the three  $HgX_3^-$  species (Figure 1), based on a procedure developed earlier.<sup>7</sup>



FIGURE 1. Electronic spectra of (A)  $\mathrm{HgCl}_{8^{-}}$  (B)  $\mathrm{HgBr}_{8^{-}}$ , and (C)  $\mathrm{HgI}_{8^{-}}$ .

AB<sub>3</sub> molecules may have a pyramidal or planar structure, corresponding to  $C_{3v}$  and  $D_{3h}$  symmetry, respectively, and the order of the molecular orbitals, after Walsh,8 is given in Figure 2. The HgX3- ions have 24 valency electrons and these fill the orbitals up to and including  $|a_2|$ . The  $(|a_2|)^2$ ground state for both planar and pyramidal molecules is  ${}^{1}A_{1}$ . The allowed transitions are also included in Figure 2.



FIGURE 2. Order of the molecular orbitals and allowed transitions in HgX<sub>3</sub>-.

The band structure of HgI3- shows five transitions and may be interpreted in terms of a pyramidal structure, but not with the 90° bond angle of the extreme case of  $C_{3V}$ (Figure 2); an angle nearer the tetrahedral angle is expected. The peaks at 34300, 40000, and  $46700 \text{ cm}^{-1}$  are

- <sup>1</sup> J. D. Dunitz and L. E. Orgel, Adv. Inorg. Chem. Radiochem., 1960, 2, 1.
- <sup>2</sup> J. G. White, Acta Cryst., 1963, 16, 397.
- <sup>8</sup> R. H. Fenn, J. W. H. Oldham, and D. C. Philips, Nature, 1963, 198, 381.
- <sup>4</sup> C. L. Van Panthaleon Van Eck, Thesis, Leiden, 1958.

- <sup>5</sup> D. B. Scaife and H. J. V. Tyrrell, J. Chem. Soc., 1958, 392.
  <sup>6</sup> P. K. Gallagher and E. L. King, J. Amer. Chem. Soc., 1960, 82, 3510.
  <sup>7</sup> T. R. Griffiths and P. J. Potts, J. C. S. Dalton, 1975, 344.
  <sup>8</sup> A. D. Walsh, J. Chem. Soc., 1953, 2266 and subsequent papers.

assigned to the electron excitations to the  $4a_1$  orbital from the 4e, 3e, and  $3a_1$  orbitals, respectively. The lowest transition corresponds to  ${}^{1}A_{1} \rightarrow {}^{1}E$ . The spin forbidden  ${}^{1}A_{1} \rightarrow {}^{3}E$  of this configuration is made partially allowable by the mixing of the <sup>3</sup>E and <sup>1</sup>E states via spin-orbit coupling, giving the small low energy peak at 30000 cm<sup>-1</sup>. The high energy band at 53400 cm<sup>-1</sup> is attributed to  $4e \rightarrow 5a_1$ . An alternative theoretical explanation is considered unlikely.

The spectrum of HgCl3- resolves into one main intense band, a lower intensity band, and an absorption edge. None of the complexities of the HgI3<sup>-</sup> system occur here, and the band structure is best explained in terms of a planar structure with  $D_{3h}$  symmetry. The excitation  $1e^{\prime\prime} \rightarrow 2a_2^{\prime\prime}$ , corresponding to  $4e \rightarrow 4a_1$  in  $C_{3v}$  symmetry, is allowed and explains the observed intense band  $({}^{1}A_{1}' \rightarrow {}^{1}E')$ . Spinorbit coupling of the  ${}^{3}E'$  state with  ${}^{1}E'$  is not expected. The other two excitations to  $2a_2^{\prime\prime}$  from  $3e^{\prime}$  and  $1a_2^{\prime}$ , corresponding to those from 3e and  $3a_1$  to  $4a_1$  in HgI<sub>3</sub>-, are forbidden in  $D_{3h}$  symmetry and are not observed. The high energy band is identified as  $3e' \rightarrow 3a_1' ({}^{1}A_1 \rightarrow {}^{1}E')$ , being much wider than the main band, as expected for excitation to a higher anti-bonding orbital.

The spectrum of HgBr<sub>3</sub><sup>-</sup> is of intermediate complexity and could be explained as having an intermediate structure, or possibly a pyramidal structure with  $C_{3v}$  symmetry. The three resolved bands are tentatively identified, as in  $HgI_3^-$ , as excitations from the 4e, 3e, and  $3a_1$  orbitals to the  $4a_1$  orbital. Similar results were obtained from the computed and resolved spectra of  $HgX_3^-$  in methanol.

It is therefore reasonable to suppose that  $HgCl_3^-$  is solvated by two axial solvent molecules to give a trigonalbipyramidal species, and HgI3- is solvated by one solvent molecule, yielding a slightly distorted tetrahedral species; HgBr<sub>3</sub><sup>-</sup> probably has the latter structure.

T.R.G. thanks the Royal Society for a travel grant and Michigan State University, East Lansing, Michigan, for facilities and assistance during the preparation of this communication.

(Received, 23rd August 1978; Com. 928.)