¹⁵N Nuclear Magnetic Resonance Studies of the Iron–Axial Ligand Bond in Low Spin Iron(11) Complexes of Octaethylporphyrin

By YUKIHIRO OZAKI and YOSHIMASA KYOGOKU*

(Institute for Protein Research, Osaka University, Suita, Osaka, Japan 565)

and HISANOBU OGOSHI, HIROSHI SUGIMOTO, and ZEN-ICHI YOSHIDA (Department of Synthetic Chemistry, Faculty of Engineering, Kyoto University, Sakyo-ku, Kyoto, Japan 606)

Summary ¹⁵N N.m.r. spectra have been obtained for bis(pyridine), bis(γ-picoline), CO, and octyl isocyanide complexes of iron(II)[¹⁵N₄]-octaethylporphyrin and bromine complexes of cobalt(III) [¹⁵N₄]-octaethylporphyrin; ¹⁵N n.m.r. chemical shifts were found to be sensitive to the axial ligands and to reflect the nature of the ligandmetal bonding. The chemical shifts were found to be sensitive to ligand replacement and gave a good indication of π type ligand-iron bonding.

Details of the synthesis of 98% ¹⁵N-enriched octaethylporphyrin are described elsewhere.⁵ The bis(pyridine) adduct {[$^{15}N_4$]-Fe²⁺(OEP)(Py)₂} (1) and the bis(γ -picoline) adduct {[$^{15}N_4$]-Fe²⁺(OEP)(γ -picoline)₂} (2) complexes were generated by reducing the iron(III) complexes with an excess of SnCl₂ in pyridine or in γ -picoline. The complexes $\{[^{15}N_4]-Fe^{2+}(OEP)(CO)(Py)\}$ (3) and $\{[^{15}N_4]-Fe^{2+}(OEP) (C_{8}H_{17}NC)(Py)$ (4) were obtained in situ by the introduction of CO gas and octyl isocyanide to the pyridine adduct (1). The cobalt complexes {[$^{15}N_4$]Co³⁺(OEP)BrX} (5) were prepared by the method of Clarke et al.⁷ The concentrations of the samples were 0.02-0.04 M. ¹⁵N N.m.r. spectra were obtained at 10.09 MHz with a JEOL PFT-100 pulse Fourier transform n.m.r. spectrometer. The spectra were recorded in the proton decoupled mode without nuclear Overhauser enhancement, and were accumulated 3 000--10 000 times with 10 s intervals.

¹⁵N N.M.R. SPECTRA of porphyrins give unique information on the manner of the binding of the inner hydrogen atoms¹⁻⁵ and metal ions^{2,3,5,6} to the central pyrrole nitrogen atoms. We have already reported ¹⁵N n.m.r. spectra of several diamagnetic metal complexes of [¹⁵N₄]-octaethylporphyrin {[¹⁵N₄]-OEP} without axial ligands^{2,5} and discussed the relationship between the chemical shifts and the metalporphyrin bonding.⁵ It is also expected that axial ligands on the central metal ion would have some effect on the chemical shifts of ¹⁵N n.m.r. resonances of [¹⁵N₄]-OEP, and we now report the ¹⁵N n.m.r. spectra of iron(II) and cobalt(III) [¹⁵N₄]-OEP co-ordinated with axial ligands.

Each of the ¹⁵N n.m.r. spectra of the iron(II) low spin derivatives gave a single non-inverted signal in the range 180-230 p.p.m. upfield from the external ¹⁵NO₃⁻. The ¹⁵N resonance positions are summarized in the Table. The

TABLE. ¹⁵N N.m.r. chemical shifts of iron and cobalt complexes of [15N4]-OEP.

Compound	Solvent	Chemical shift ^a
$ \begin{array}{l} \{ [{}^{18}N_4] {-}Fe^{2+}(OEP)(Py)_2 \}^b \\ \{ [{}^{18}N_4] {-}Fe^{2+}(OEP)(\gamma\text{-picoline})_2 \} \\ \{ [{}^{16}N_4] {-}Fe^{2+}(OEP)(C_8H_{17}NC)(Py) \} \\ \{ [{}^{16}N_4] {-}Fe^{2+}(OEP)(CO)(Py) \} \end{array} $	C_5D_5N γ -Picoline C_5D_5N C_5D_5N	$187.9 \\ 185.5 \\ 210.6 \\ 231.3$
$ \begin{array}{l} \left\{ [{}^{15}N_4] - Co^{3+}(OEP)(Br)(Py) \right\} \\ \left\{ [{}^{15}N_4] - Co^{3+}(OEP)(Br)(Py) \right\} \\ \left\{ [{}^{15}N_4] - Co^{3+}(OEP)(Br)(4-acetyl-Py) \right\} \\ \left\{ [{}^{15}N_4] - Co^{3+}(OEP)(Br)(\gamma\text{-picoline}) \right\} \end{array} $	CD_2Cl_2 C_5D_5N 4-Acetyl-Py γ -Picoline	259·4 260·0 262·5 260·3
$ \begin{array}{l} \left\{ [^{15}N_4] - Mg(OEP) \right\} \\ \left\{ [^{15}N_4] - Ni(OEP) \right\} \\ \left\{ [^{15}N_4] - Zn(OEP) \right\} \\ \left\{ [^{16}N_4] - Cd(OEP) \right\} \end{array} $	$\begin{array}{l} \mathrm{CDCl}_{3} + \mathrm{Py} \\ \mathrm{CDCl}_{3} \\ \mathrm{CDCl}_{3} + \mathrm{Py} \\ \mathrm{C}_{5}\mathrm{D}_{5}\mathrm{N} \end{array}$	179·9° 257·0° 179·2° 173·1°

^a Shifts are relative to external NH₄¹⁵NO₃ in C₂D₆SO (p.p.m.). ^b Py denotes pyridine. ^c From ref. 5.

¹⁵N n.m.r. chemical shifts of the CO (3) and octyl isocyanide (4) complexes in pyridine solution are 43 and 23 p.p.m. upfield from that of the bis(pyridine) complex (1), respectively.

In our previous study, there was a correlation between the absorption maxima and the induced shifts due to the metal binding in {[$^{15}N_4$]-M(OEP)} (M = Mg, Ni, Zn, and Cd).⁵ The shifts were attributed to energy differences between each orbital level ΔE_{ij} in the paramagnetic term σ_p of Ramsey's formula.⁹ Since the absorption maxima of the Soret, α , β , and charge transfer bands of the iron(11)

77

complexes studied here are fairly close to each other, the origin of the ligand induced shifts should be different from that for $\{[^{15}N_4]-M(OEP)\}$. In a previous Raman study it was shown that there are two kinds of iron(II) low spin states in haemoproteins which are specified by the binding nature of the sixth ligand to the haem iron.⁸ Since the iron-axial ligand bond in (3) and (4) is predominantly of the π type and that of the complexes (1) and (2) is of the σ type, the present ¹⁵N n.m.r. data also reflect the nature of the iron-ligand bonding. When CO binds to Fe as an axial ligand, the electrons in the π orbital are delocalized from the Fe–OEP system to the axial ligand π orbital. The paramagnetic shielding term σ_p depends on the ΔE_{ij} and the distribution of electrons ΣQ_{ij} . If ΔE_{ij} does not differ for each compound as in the CO, $C_8H_{17}NC$, pyridine, and γ -picoline complexes, σ_p may be affected by the magnitude of ΣQ_{ij} . The decrease of the latter term implies a decrease of the absolute value of σ_p and causes the upfield shift, as the sign of σ_p is positive. This prediction is consistent with the observed result that the ^{15}N of the CO adduct (3) resonates at higher magnetic field than that of the pyridine adduct (1).

The resonance frequency of the bis(picoline) complex (2) is almost the same as that of the pyridine complex (1). There are also quite small differences among the ¹⁵N resonance positions of the cobalt complexes (5). The basicities of these axial ligands differ from each other, although such differences seem to have little influence on the chemical shift of the ¹⁵N nuclei in the porphyrin ring. The change of the basicity in the axial ligands may give only second order perturbation to the ¹⁵N n.m.r. chemical shift of the porphyrin ring compared with the change in the nature of the metal-ligand bond.

(Received 5th October 1978; Com. 1071).

¹ C. S. Irving and A. Lapidot, J.C.S. Chem. Comm., 1977, 184.

- ² K. Kawano, Y. Ozaki, Y. Kyogoku, H. Ogoshi, H. Sugimoto, and Z. Yoshida, J.C.S. Chem. Comm., 1977, 226.
- ³ D. Gust and J. D. Roberts, *J. Amer. Chem. Soc.*, 1977, **99**, 3637. ⁴ H. J. C. Yeh, M. Sato, and I. Morishima, *J. Magnetic Resonance*, 1977, **26**, 365.
- ¹ K. Kawano, Y. Ozaki, Y. Kyogoku, H. Ogoshi, H. Sugimoto, and Z. Yoshida, J.C.S. Perkin II, in the press.
 ⁸ I. Morishima, T. Inubushi, and M. Sato, J.C.S. Chem. Comm., 1978, 106.
 ⁷ D. A. Clarke, D. Dolphin, R. Grigg, A. W. Johnson, and H. A. Pinnock, J. Chem. Soc. (C), 1968, 881.

- ⁸ T. Kitagawa, Y. Kyogoku, T. Iizuka, and M. Saito, J. Amer. Chem. Soc., 1976, 98, 5169.
- ⁹ N. F. Ramsey, Phys. Rev., 1950, 78, 699.