Use of ¹³C $T_{1\rho}$ Measurements to Study Dynamic Processes in Solution

By DAVID M. DODDREL,* M. ROBIN BENDALL, PETER F. BARRON, and DAVID T. PEGG (School of Science, Griffith University, Nathan, Queensland 4111, Australia)

Summary Experimental requirements for making ¹³C T_{1p} measurements for studying dynamic processes in solution and the utility of these measurements are pointed out; the method is used to study internal reorientation of the CHO group of benzaldehyde and *p*-methoxybenzaldehyde, the measurements providing useful exchange rate data some 100—120 K above the coalescence temperature.

It has been pointed out that relaxation effects in the rotating frame are a potentially powerful means of studying

dynamic processes in solution.¹ In this regard, ¹³C T_{1p} measurements should be particularly useful, as dynamic processes at many different sites in a molecule can be studied by Fourier transformation of the free induction decay following the spin-locking pulse. Also the contribution to T_{1p} from chemical exchange [equation (1)],² T_{1p} (C.E.), depends on $(\Delta \omega)^2$ (where $\Delta \omega$ is the shift separation in rad s⁻¹); for ¹³C, this can be large even when working with low field n.m.r. spectrometers. In equation (1), τ_{e}^{-1}

$$[T_{1\rho}(C.E.)]^{-1} = \frac{1}{4} \left(\Delta \omega \right)^2 [\tau_{\mathbf{e}} / (1 + \omega_1^2 \tau_{\mathbf{e}}^2)]$$
(1)

is the exchange rate constant, ω_1 the strength of the spinlocking field, and exchange between two equally populated sites is assumed. The contribution from exchange to the measured T_{1p} can be found from the measured difference $(T_{1p}^{-1} - T_1^{-1})$. The interesting feature of the method is that it potentially allows the determination of exchange rates

FIGURE 1. Semi-log plot of $\ln(M_{\tau}) vs. \tau$ for the carbon resonance of ethylene glycol determined at 22.63 MHz, 300 K, and sample containing *ca.* 20% D_2O under conditions of: (A) Proton heteronuclear decoupling and $\omega_1 = 1.74 \times 10^4$ rad s⁻¹. (B) Proton heteronuclear decoupling and $\omega_1 = 4.08 \times 10^3$ rad s⁻¹. The 'apparent' T_{1P} determined from the solid line is 0.81 s (correlation coefficient for least squares regression 0.999). (C) Decoupler gated off during spin locking pulse and $\omega_1 = 1.74 \times 10^4$ rad s⁻¹. T_{1P} is 1.80 s (correlation coefficient 1.000). In all cases, the carrier is set 73 Hz off-resonance. T_1 is measured as 2.01 s.

significantly faster than can be reliably obtained from highresolution linewidth or spin-echo measurements.² We now point out one vital experimental requirement for highresolution ¹³C $T_{1\rho}$ measurements and demonstrate the utility of the technique by measuring the barrier to rotation of the CHO group in benzaldehyde (1) and p-methoxy-

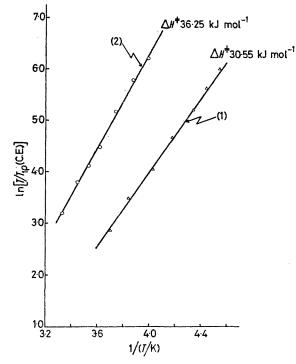


FIGURE 2. Semi-log plots of $\ln [T/T_{1p}(C.E.)]$ vs. T^{-1} for C(2) resonance of benzaldehyde (1) (correlation coefficient 1.000), and *p*-methoxybenzaldehyde (2) (correlation coefficient 0.99).

benzaldehyde (2). For these compounds we demonstrate that T_{1p} measurements provide useful exchange rate data some 100—120 K above the coalescence temperature.

Instrumentally the T_{1p} pulse sequence is well known,³ but for ¹³C studies in particular, there have been very few T_{1p} measurements reported and it is not appreciated that the use of proton heteronuclear decoupling, a requirement for obtaining simplified ¹³C spectra, introduces experimental difficulties. However, Freeman and Hill alluded to these problems in their reports on ¹³C T_2 measurements;⁴ briefly, the problem arises from magnetic resonances in the rotating frame⁵ where 'stirring' of the proton spins results in rapid (and often non-exponential) relaxation of the ¹³C

TABLE.	Temperature	dependence	of T_1	and T_1	o (in s)	for	the
	resonance in be						

Benzaldehyde			p-Methoxybenzaldehyd			
$\overline{T/K}$	T_1	$T_{1\rho}$	$\widetilde{T/K}$	T_1	Τ ₁ ρ	
220	1.11	0.37	240	0.73	0.19	
230	2.08	0.79	250	1.05	0.34	
240	2.81	1.29	260	1.45	0.65	
250	3.43	2.06	270	1.97	1.04	
260	4.46	2.96	280	2.65	1.65	
270	5.61	4.09	290	3.35	$2 \cdot 24$	
290	8.03	6.76	300	3.93	2.97	
Coalescer	nce temp	perature ^b				
168				213		

* C(2) is ortho to the CHO group. b Ref. 7.

[†] This analysis assumes that chemical exchange is the only contribution to $T_{1\rho}$. Although this is a reasonable assumption here, in general, $T_{1\rho}$ should be measured as a function of applied field strength to determine the chemical exchange contribution. Accordingly, we have developed the instrumental capabilities⁶ to perform 10.45 MHz ¹³C $T_{1\rho}$ measurements as a complement to the 22.63 MHz measurements reported herein. spin via scalar coupling.⁶ Accurate ¹³C $T_{1\rho}$ measurements can only be performed by gating the decoupler off during the spin locking pulse. Figure 1 summarises measurements on ethylene glycol illustrating the difficulties.

In the table we list T_1 and $T_{1\rho}$ values for the C(2) carbon resonances of (1) and (2) obtained as a function of temperature and Figure 2 shows a plot of $\ln T(T_{10}^{-1} - T_1^{-1}) vs. T^{-1}$. We obtained ΔH^{\ddagger} values of 30.55 and 36.25 kJ mol⁻¹ for (1) and (2), respectively, in good agreement with previous measurements.7 The significant experimental observation

(Table) is that experimentally meaningful exchange rate data are obtained some 100-120 K above the coalescence temperature.

It is clear that ¹³C T_{1p} measurements properly performed will be an important means of probing low-energy dynamic processes in solution.

This research was supported by grants from the Australian Research Grants Committee.

(Received, 2nd October 1978; Com. 1046.)

¹ See L. W. Reeves in 'Dynamic Nuclear Magnetic Resonance,' eds., L. M. Jackman and F. A. Cotton, Academic Press, New York, ¹ See L. W. Reeves in Dynamic Fusicity Lagrand 1.
¹ 1975, Ch. 4.
² C. Deverell, R. E. Morgan, and J. H. Stange, Mol. Phys., 1970, 18, 553.
³ T. K. Leipert, J. H. Noggle, W. J. Freeman, and D. L. Dalrymple, J. Magnetic Resonance, 1975, 19, 208.
⁴ Ref. 1, Ch. 5; R. Freeman and H. D. W. Hill, J. Chem. Phys., 1971, 55, 1985.
⁵ S. R. Hartmann and E. L. Hahn, Phys. Rev., 1962, 128, 2042.
⁶ D. M. Doddrell, J. Field, M. R. Bendall, P. F. Barron, and D. T. Pegg, manuscript in preparation.
⁷ T. Drakenberg, R. Jost, and J. Sommer, J.C.S. Chem. Comm., 1974, 1011.