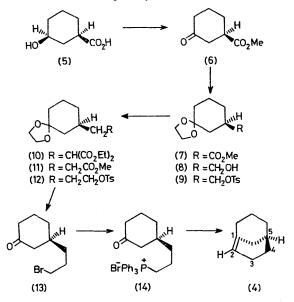

Synthesis of the First Optically Active anti-Bredt Rule Compound with Known Absolute Configuration: (-)-(5S)-Bicyclo[3.3.1]non-1-ene

By MASAO NAKAZAKI,* KOICHIRO NAEMURA, and SEIICHI NAKAHARA

(Department of Chemistry, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka, 560 Japan)

Summary The first optically active anti-Bredt rule compound, (-)-(5S)-bicyclo[3.3.1]non-1-ene (4) was prepared from (-)-(1R,3S)-cis-3-hydroxycyclohexanecarboxylic acid (5).


THE bicyclic anti-Bredt rule hydrocarbon¹ (2) with a single-unsaturated centre can schematically be constructed from a *trans*-cycloalkene (1) by bridging [dotted line in (2)] the olefinic carbon atom and the *trans*-bridge. This bridging degrades the original C_2 symmetry inherent in the *trans*-cycloalkene to C_1 symmetry creating a new asymmetric centre (*) at the ring juncture.

There seems to have been no explicit discussion of this intrinsic chiral nature of anti-Bredt rule compounds, and we here report the preparation of the first optically active anti-Bredt rule hydrocarbon with known absolute configuration, (-)-(5S)-bicyclo[3.3.1]non-1-ene² (4) which can

be regarded as a methylene-bridge derivative of (-)-(R)trans-cyclo-octene³ (3).

Esterification with diazomethane followed by Jones oxidation converted the carboxylic acid⁴ (5), $[\alpha]_D - 6\cdot 2^\circ$ (c 1.61, EtOH) (optical purity 36%),[†][‡] into (-)-(6), $[\alpha]_D$ -3.8° (c 2.46, EtOH), whose carbonyl group was protected by conversion into the (-)-acetal (7), $[\alpha]_{\rm p} = 15 \cdot 2^{\circ}$ (c 0.823, EtOH). Routine side chain extension procedure involving reduction with LiAlH₄, tosylation, and malonate ester

synthesis converted the acetal (7) into the malonate (10) via (8) and (9). Saponification, decarboxylation, and re-esterification of the resulting carboxylic acid transformed (10) into (–)-(11), $[\alpha]_{D}$ –0.64° (c 5.33, EtOH), and reduction with LiAlH₄, followed by tosylation furnished the tosylate (12). Refluxing (12) with lithium bromide in acetone for 43 h yielded (+)-(13), $[\alpha]_{D}$ +3.0° (c 1.45, EtOH), which was converted into (+)-(14), $[\alpha]_D$ +3.6° (c 0.827, CH₂Cl₂). The final step in the synthesis was the intramolecular Wittig reaction² of (+)-(14) by heating with sodium hydride in tetraglyme (2,5,8,11,14-pentaoxapentadecane). Chromatography on Florisil of the olefinic product afforded a 27% yield of the bicyclic olefin (4), b.p. 80-85 °C at 12 mmHg, $[\alpha]_D - 259^\circ$ (c 0.574, CHCl₃), m/e122 (M^+) whose identity was confirmed by spectroscopic comparison (i.r. and ¹H n.m.r.) with the racemic compound.²

The absolute rotation $[\alpha]_{D,abs.}$ for (4) was calculated to be -720° (CHCl₃), based on the estimated optical purity of the starting material, and this value can be compared with the reported value $[\alpha]_{D,abs.} - 458^{\circ}$ (neat) of (-)-(R)-transcyclo-octene³ (3).

Their close stereochemical relationship is also revealed in their respective Cotton curves with $[\theta]_{213}$ nm -1.36×10^{5} $(c \ 9.11 \times 10^{-4}, \text{ iso-octane})$ for (4) and $[\theta]_{196\text{nm}} - 1.41$ $\times 10^5$ (cyclohexane)⁵ for (3), which are compatible with the prediction from Scott's octant projection.⁵

(Received, 9th October 1978; Com. 1080.)

[†] Structural assignments are supported by analytical and spectroscopic data.

[‡] Conversion of the (+)-enantiomer of (5), $[\alpha]_{D} + 5 \cdot 6^{\circ}$ (c 0.930, EtOH), into (-)-3-methylcyclohexanone, $[\alpha]_{D} - 4 \cdot 1^{\circ}$ (c 1.62, EtOH) (optical purity 33%), gave the absolute rotation of the hydroxycarboxylic acid (5) as $[\alpha]_{D,abs.} - 17 \cdot 0^{\circ}$. Three absolute rotation values for 3-methylcyclohexanone have been reported: $[\alpha]_{D} 12 \cdot 5^{\circ}$ (H. L. Goering and E. F. Silversmith, *J. Amer. Chem. Soc.*, 1955, 77, 5172); 11.7° (A. K. Macbeth and J. A. Mills, *J. Chem. Soc.*, 1947, 205); and 13 \cdot 54° (H. Rupe, *Annalen*, 1927, 459, 206). The average absolute rotation, $[\alpha]_D 12.6^\circ$, was used in our optical purity calculations.

§ The $[\theta]$ value is corrected to 100% optical purity from the known optical purity.

¹G. Köbrich, Angew. Chem. Internat. Edn., 1973, 12, 464; R. Keese, *ibid.*, 1975, 14, 528; G. L. Buchanan, Chem. Soc. Rev., 1974, 3, 41. ² For the synthesis of the racemic compound, see K. B. Becker, *Helv. Chim. Acta*, 1977, 60, 81, and references therein. ³A. C. Cope, C. R. Ganellin, H. W. Johnson, Jr., T. V. Van Auken, and H. J. S. Winkle, *J. Amer. Chem. Soc.*, 1963, 85, 3276; A. C. Cope and A. S. Mehth, *ibid.*, 1964, 86, 5626. ⁴ Wires and J. Buchinghong, 'Atlas of Starschemistry,' Chapter and Hell, London, 1974, p. 49

⁴ W. Klyne and J. Buckingham, 'Atlas of Stereochemistry,' Chapman and Hall, London, 1974, p. 42.

⁵ A. I. Scott and A. D. Wrixon, Tetrahedron, 1970, 26, 3695.