Infrared Study of Coadsorption of H,S and *CO,* **on y-Alumina**

By JEAN-CLAUDE LAVALLEY,* JOSETTE TRAVERT, THÉRÈSE CHEVREAU, JEAN LAMOTTE, and ODETTE SAUR *(Groupe Catalyse et Spectroch.imie, 1.S.M.R.A* ., *Univevsitk de Caen,* **14032** *Caen Cedex, France)*

Summayy **Infrared results provide spectroscopic evidence** that H_2S and CO_2 interact on γ -alumina giving rise to **thiocarbonate surface species leading to the formation of carbonyl sulphide.**

 γ -ALUMINA is the most common catalyst in commercial use for the Claus reaction, equation (1). An i.r. study of

$$
2 H_2S + SO_3 \to 3 S + 2 H_2O \tag{1}
$$

sulphur dioxide adsorption on γ -alumina has been reported recently.1 1.r. spectra of hydrogen sulphide chemisorbed on Al_2O_3 have been studied by Dalla Lana *et al.*^{2,3} and by Slager and Amberg.4 In particular two strong bands were observed at 1341 and 1568 cm^{-1.3,4} Slager and Amberg assigned the former to the $\delta(SH_2)$ mode of hydrogen bonded species and the latter to a $v(A1-O)$ vibration.⁴ Recently, we noted that both bands were due to $CO₂$ traces admixed with H_2S ⁵. As the wavenumbers are different from those given by $CO₂$ adsorbed on γ -Al₂O₃, we suspected that interaction between H_2S and CO_2 had taken place. We here report the results of i.r. studies of this surface interaction.

The γ -alumina used was from Degussa with a surface area of $90 \text{ m}^2 \text{ g}^{-1}$. The powder was pressed into the form of *ca.* 50mg discs which were activated at 600 "C in a grease-free silica cell, and pretreated by heating in oxygen for 2 h followed by evacuation. The samples were then treated in 300 Torr of hydrogen for another 2 h followed by evacuation at the same temperature to a residual pressure of < 10-5 Torr. This pretreatment removes adsorbed 'molecular' oxygen species which may transform H_2S into water.3 1.r. spectra were recorded at room temperature with a Perkin-Elmer 580 grating instrument. Complementary gravimetric measurements were carried out in a conventional McBain thermobalance with 0.4 *g* samples of catalyst pretreated in the same way as before, the activation temperature being 500 *"C.* The adsorption pressure was kept very low $(0.3-1.5$ Torr). The chemisorbed amount is defined as the quantity remaining on alumina at 95° C after cryogenic evacuation. 'Pure' H_2S or D_2S samples, without any trace of $CO₂$, were prepared from $Al₂S₃$ by hydrolysis with H_2O or D_2O .⁶

The admission of 'pure' H_2S to alumina causes a decrease in the intensity of the background OH band at 3785 cm-l while bands at 2570 and 3680 cm⁻¹ appear. No bands are detected in the 1700-1200 cm⁻¹ range. Recently, Karge and Rasko,⁷ studying H_2S adsorption on zeolites, showed that on aluminium-rich faujasites, H_2S molecules were adsorbed dissociatively. By analogy, we assign the 2570 and 3680 cm-l bands to SH- and OH groups formed from H₂S dissociative adsorption on alumina. Gravimetric measurements show that $80 \mu \text{mol g}^{-1}$ of H₂S are chemisorbed on γ -Al₂O₃.

I.r. spectroscopic studies on the chemisorption of $CO₂$ on Al_2O_3 have already been carried out.^{8,9} We find principal absorption bands at 3620, 1655, 1450, and 1228 cm^{-1} (Figure), due to various modes of vibration of HCO_3^- ions. According to Fink¹⁰ and Knözinger,⁹ these species are formed on Al-OH pair sites, called X-sites. Gravimetric measurements show that *ca*. 12 μ mol g^{-1} of CO₂ are strongly chemisorbed on γ -Al₂O₃ at 95 °C.

When H_2S is adsorbed on CO_2 -treated y-alumina, the $HCO₃$ bands are weakened, while a new pair of bands appears at 1570 and **1340** cm-l (Figure). Gravimetric measurements show that the number of H_2S molecules chemisorbed on γ -alumina is not sensitive to the preadsorption of CO_2 . Adsorption of a mixture of H_2S and CO, **(10:** 1) gives rise only to the pair of bands at 1570 and

FIGURE. Spectra of CO₂ and H₂S on y-alumina: (A) base line spectrum of activated disc; (B) CO₂ on Al₂O₃ after room temperature pumping; (C) (B) $\cos\theta$ code of H₂S and Figure to H₂S (90 μ mol g^{-1});
(D) coadsorption of H₂S and CO₂ (10:1) on alumina (100 μ mol) g^{-1}).

1340 cm-l in the 1700-1200 cm-l range (Figure). Their wavenumber is not sensitive to substitution of D for H as the same bands occur on adsorbing a mixture of D_2S and CO,. We assign them to carboxylate groups **(va** and vs respectively) of species arising from interaction of H_2S (or D_2S) and CO_2 on the surface.

Coadsorption of H,S and *CO,* on alumina leads to the formation of carbonyl sulphide: a band due to COS in the gas-phase surrounding the disc appears at 2060 cm-l. Thus, we studied the adsorption of COS on γ -alumina. This adsorption gives no detectable changes in the intensities of i.r. bands due to surface hydroxy groups. New bands appearing at 1985 cm⁻¹ (very weak) and 1945 cm⁻¹ (weak) are due to chemisorbed COS. After a longer time of contact, the pair of bands at 1570 and 1340 cm-l observed on coadsorption of H_2S and CO_2 on alumina becomes apparent. Bands due to $HCO₃⁻$ species also appear. These features are related to the formation of $CO₂$ from COS, which is confirmed by the chromatographic analysis of the gas-phase.

From the experimental data, we conclude that some H,S molecules should be chemisorbed and activated at sites close to those leading to the formation of HCO_3^- species.

This situation is allowed on the X-sites which have been described as acid-base pair sites consisting of a co-ordinatively unsaturated Al^{3+} ion and a basic OH group.^{9,11} If we assume that hydrogen sulphide is held by co-ordination bonds on co-ordinatively unsaturated Al^{3+} ions, the surface interaction between H_2S and CO_2 on alumina may be visualized as in the Scheme.

The surface thiocarbonate species would be characterized by the pair of bands at 1570 and 1340 cm^{-1} . Their

- 1C. C. Chang, *J. Catalysis,* **1978,** *53,* **374.** *^t***A. V.** Deo, **I.** G. Dalla Lana, and H. **W.** Habgood, *J. Catalysis,* **1971, 21, 270.**
-
-
- ⁸ C. L. Liu, T. T. Chuang, and I. G. Dalla Lana, *J. Catalysis*, 1972, 26, 474.
⁴ T. L. Slager and C. H. Amberg, *Canad. J. Chem.*, 1972, 50, 3416.
⁵ J. C. Lavalley, J. Travert, D. Laroche, and O. Saur, *Compt. rend.*
-
-
- P. G. Karge and J. Rasko, J. Colloid. Interface Sci., 1978, 64, 522.

Y. Amenomiya, Y. Morikawa, and G. Pleizier, J. Catalysis, 1977, 46, 431.

H. Knözinger, Adv. Catalysis, 1976, 25, 184 and references therein.
-
-
- ¹⁰ P. Fink, Rev. Chim. (Roumania), 1969, 14, 811.
¹¹ H. Knözinger, H. Krietenbrink, H. D. Müller, and W. Schulz, Proc. 6th Internat. Congr. Catalysis, London, 1976, vol. 1, Chemical
Society, 1977, p. 183; H. Knözinger
- **1% W.** 0. **Haag** and J. N. Miale, Proc. **6th** Internat. **Congr.** Catalysis, London, **1976,** vol. **1,** Chemical Society, **1977, p. 397.**

structure easily explains the formation of COS from H_2S and $CO₂$ on the surface. Similar species may be involved in the formation of $CO₂$ from COS on alumina. Haag and Miale12 suggested almost similar surface thiocarbonate species to explain the formation of $CO₂$ from COS on MgO.

(Received, 6th November 1978; *Corn.* 1192.)