Synthesis of a Derivative of Vancosamine, a Component of the Glycopeptide Antibiotic Vancomycin

By Ton That Thang* and Francois Winternitz

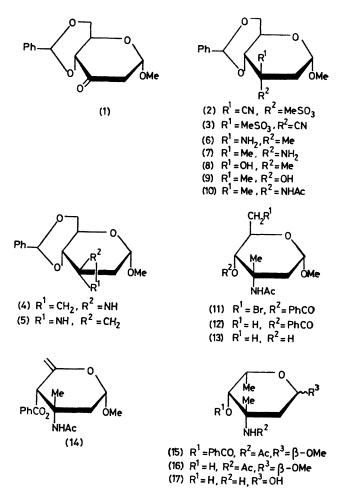
(Equipe de recherche No. 195, C.N.R.S., 8 rue Ecole Normale, Montpellier Cedex 34075, France)

and Alain Olesker, Alain Lagrange, and Gabor Lukacs

(Institut de Chimie des Substances Naturelles du C.N.R.S., 91190-Gif-sur-Yvette, France)

Summary A derivative of the branched-chain sugar 3-amino-2,3,6-trideoxy-3-C-methyl-L-lyxo-hexose (vanco-samine) has been synthesised.

CONSIDERABLE effort has been recently directed^{1,2} towards the synthesis of the unusual branched-chain sugar 3-amino-2,3,6-trideoxy-3-C-methyl-L-lyxo-hexose (vancosamine)³ (17), a component of the antibiotic vancomycin.⁴ We report here the first stereospecific synthesis of a derivative (16) of vancosamine (17).


The addition of KCN to methyl 4,6-O-benzylidene-2-deoxy- α -D-erythro-hexopyranosid-3-ulose (1), under conditions of thermodynamic control in CH₂Cl₂ solution in the presence of NaHCO₃ and water, followed by mesylation furnished a product (3) belonging to the arabino-series as shown by ¹³C n.m.r. spectroscopy, yield 76% (m.p. 169—171 °C, $[\alpha]_{\rm D} + 95^{\circ}$). In contrast, the addition of HCN to (1), under kinetic control, in pyridine solution, followed by mesylation has been shown by Yoshimura et al.⁵ to afford a compound (2) with the ribo-configuration. This reaction was repeated, using the method of Bourgeois,² and (2) and (3) were transformed with configurational inversion^{1b} through the corresponding spiro-aziridines (4)⁵ and (5) into the amines (6)⁵ (oil, $[\alpha]_{\rm D} + 89^{\circ}$) and (7) (m.p. 97—99 °C, $[\alpha]_{\rm D} + 75^{\circ}$), respectively, with overall yields of 67%.

The stereochemistry at C-3 of (6) has been unambiguously established from chemical evidence.⁵ ¹³C N.m.r. spectroscopy may be used to determine the configuration of substituents on quaternary centres⁶ and this technique was used to establish the structure of (7) and to confirm that of (6).⁵ Carbon signal assignments for (6) and (7) and for the models (8)⁷ and (9)⁷ are in the Table.[†] The characteristic chemical shift differences observed between the corresponding carbon signals of the two models (8) and (9) (especially C-4, C-5, and 3-Me) are also exhibited by the

TABLE. ¹³C Chemical shifts.^a

Carbon	(6)	(7)	(8)	(9)	(13)	(16)
C-1	98.9	99·0	9 9·0	99 •0	97·9	$100 \cdot 2$
C-2	43.4	41 .6	42 ·6	41 ·8	42.4	37.3
C-3	49.9	$49 \cdot 2$	69 ·5	68.5	57 ·0	$55 \cdot 9$
C-4	86.6	84·1	85.5	83·3	79.9	72.6
C-5	61.2	59.4	61.8	59.7	66.5	68·9
C-6	69.5	69.3	69.5	69·4	17.5	17.1
3-Me	$22 \cdot 9$	2 8·0	$22 \cdot 8$	$25 \cdot 3$	24.0	21.6
OMe	55.0	55.1	55.1	$55 \cdot 4$	55.0	56.5
NH-COMe					172.7	170.4
NH-COMe					23.3	24.3

^a Benzylidene carbon signals appear for (6), (7), (8), and (9) at 101.9 ± 0.3 , $2 \times 126.3 \pm 0.2$, $2 \times 128.3 \pm 0.2$, 129.1 ± 0.2 , and 137.7 ± 0.2 .

spectra of the amines (6) and (7). The axial C-methyl carbons resonate at higher field than their equatorial counterparts and a greater steric compression effect is experienced by C-5 when its hydrogen interacts 1,3-diaxially with a C(3)-heteroatom linkage as in (7) and in (9) than with a C(3)-carbon bond as in (6) and in (8).⁸

The amine (7) was readily acetylated to (10) (oil, $[\alpha]_{\rm D}$ + 104°) which, with N-bromosuccinimide, gave methyl 3-acetamido-4-O-benzoyl 6-bromo-2,3,6-trideoxy-3-C-methyl- α -D-*ribo*-hexopyranoside (11) in 89% yield (m.p. 141 °C, $[\alpha]_{\rm D} + 22^{\circ}$). Catalytic hydrogenation of (11) gave (12) (oil, $[\alpha]_{\rm D} + 55^{\circ}$) which, upon alkaline hydrolysis, furnished (13) (m.p. 134-135 °C, $[\alpha]_{\rm D} + 41^{\circ}$) in 85% yield from (11).

 \dagger ¹³C N.m.r. spectra were recorded in CDCl₃ solution on a Bruker HX-90 Fourier transform spectrometer. Chemical shifts are given in p.p.m. with respect to Me₄Si as internal standard. $[\alpha]_D$ values were measured in CDCl₃ solution at room temperature.

Dehydrobromination of (11) as described by Horton and Weckerle⁹ gave the 5,6-unsaturated glycoside (14) (m.p. 136-138 °C, $[\alpha]_D + 117^\circ$) in 95% yield. The ethylenic double bond of this compound was hydrogenated in the presence of Raney nickel yielding 78% of (15) (m.p. 83-85 °C, $[\alpha]_D - 13^\circ$) and 7.8% of (12) which could be separated by chromatography. Hydrolysis of the benzoate group of (15) furnished the desired product, methyl 3-acetamido-2,3,6-trideoxy-3-C-methyl- β -L-lyxo-hexopyranoside (16)(m.p. 133–134 °C, $[\alpha]_{D}$ + 46°).

The ¹H n.m.r. spectra of (13) and (16) are in excellent agreement with the structures assigned. In the ¹³C n.m.r. spectrum of (16) the C-1, C-5, and OMe signals are deshielded while the C-2, C-4, and 3-Me signals are characteristically shielded with respect to the corresponding carbon resonances of (13)¹⁰ (Table). These differences reflect unambiguously the equatorial configuration of the anomeric substituent and the axial configuration of the C-4 and 3-Me substituents of (16).

(Received, 11th September 1978; Com. 986.)

¹ (a) J. S. Brimacombe and L. W. Doner, *J.C.S. Perkin I*, 1974, 62; J. S. Brimacombe, J. A. Miller, and U. Zakir, *Carbohydrate Res.*, 1975, 41, C3; 1975, 44, C9; (b) *ibid.*, 1976, 49, 233. ² J. M. Bourgeois, *Helv. Chim. Acta*, 1973, 56, 2879; 1974, 57, 2553; 1975, 58, 363; 1976, 59, 2114. ³ R. M. Smith, A. W. Johnson, and R. D. Guthrie, *J.C.S. Chem. Comm.*, 1972, 361; A. W. Johnson, R. M. Smith, and R. D. Guthrie, *J.C.S. Perkin I*, 1972, 2153; W. D. Weringa, D. H. Williams, J. Feeney, J. P. Brown, and R. W. King, *ibid.*, p. 443. (A. D. W. Williams and L. B. Kolmon, *L. Marger Chem. Soc.* 1977, 90, 2769, and reforement control therein.

- ⁴ D. H. Williams and J. R. Kalman, J. Amer. Chem. Soc., 1977, 99, 2768 and references cited therein.
 ⁵ J. Yoshimura, M. Matsuzawa, K. Sato, and M. Funabashi, Chem. Letters, 1977, 1403.
 ⁶ A. M. Sepulchre, B. Septe, G. Lukacs, S. D. Gero, W. Voelter, and E. Breitmaier, Tetrahedron, 1974, 30, 905.
 ⁷ B. Flaherty, W. G. Overend and N. R. Williams, Chem. Comm., 1966, 43; J. Chem. Soc. (C), 1966, 398.
 ⁸ J. B. Stothers, 'Carbon-13 NMR Spectroscopy,' Academic Press, New York, 1972.
 ⁹ D. Harton and W. Wacherle, Carbonytera Pac.

- ⁹ D. Horton and W. Weckerle, Carbohydrate Res., 1975, 44, 227. ¹⁰ S. Omura, A. Nakagawa, A. Neszmelyi, S. D. Gero, A. M. Sepulchre, F. Piriou, and G. Lukacs, J. Amer. Chem. Soc., 1975, 97, 4001; S. Omura, A. Neszmelyi, M. Sangaré, and G. Lukacs, Tetrahedron Letters, 1975, 2939.