Dye- and Dicyanoanthracene -photosensitized Oxygenations of Sulphur Compounds. Product Selectivity

By **WATARU ANDO,* TOSHIAKI NAGASHIMA, KEIKO SAITO,** and **SHIGEO KOHMOTO** *(Department of Chemistry, The University of Tsukuba Niiharigun, Ibaraki 300-3* ¹, *Japan)*

Summary Photo-oxygenation of vinyl sulphides sensitized either by dyes or by 9,lO-dicyanoanthracene **(DCA)** gave products arising from oxidative cleavage of the double bond in closely similar ratios in each case ; similarly, dyephotosensitized oxygenation of fluorenyl ethyl sulphide gave fluorenone, l-hydroxy-9-Auorenone, 9-fluorenyl ethyl sulphoxide, and 9-fluorenyl ethyl sulphone as major products, while DCA-sensitized oxygenation gave the first three products in similar relative yields.

DYE-photosensitized oxygenation of sulphur compounds has been postulated to proceed through an intermediate adduct, **2,** which could be a zwitterionic peroxide, a diradical, or a cyclic peroxide which reacts with a second molecule of sulphide to give the sulphoxide.¹ Photo-oxygenation sensitized by 9,lO-dicyanoanthracene (DCA) gives similar products ; in this case it was proposed that electron transfer

from excited DCA to oxygen gives a superoxide.2 Electron transfer from sulphur to singlet oxygen was suggested (originally by Foote3) as an alternative mechanism but no detailed evidence was reported.

$$
\begin{array}{cccc}\n & & 1_{0} & & \\
& & & 1_{0} & \\
& & & & \n\end{array}
$$
\n
$$
R_{2}S \xrightarrow[1_{0}]{R_{2}S} R_{2}S + C_{2}S
$$
\n
$$
R_{2}S + C_{2}S
$$
\n
$$
R_{2}S + C_{2}S
$$

We here report a detailed comparison of the product distribution from oxidation of different types of sulphide by both dye- and DCA-sensitized photo-oxygenation and by means of quenching techniques, and show that, although the latter type of reaction does not involve singlet oxygen, both apparently proceed through the same intermediate.

TA~LE 1. Product ratio in the oxygenation **of 1-ethylthio-2-ethylhex-1-ene** *(0.6* **mmol)** in **26 ml of** MeCN-CCl, **(4: 1)**

TABLE 2. Product ratio in the oxygenation of l,l-diphenyl-2 methylthioethylene (2-0 mmol) in 20 ml of solvent

The sensitized photo-oxygenations were carried out in a water cooled immersion irradiation apparatus using a halogen lamp. All the major products were separated by g.l.c., and their properties were consistent in all cases with the structure previously assigned to the photo-oxygenation products.*

Quenching experiments by β -carotene showed that singlet oxygen must be the reactive species in dye-sensitized oxygenation. The Figure shows the results for l-ethylthio-2-ethylhexene. The concentration of added β -carotene was kept below **10-3 M.B** Similar results were observed **for** other sulphides.

9-Fluorenyl ethyl sulphide was photo-oxygenated in dry benzene with **meso-tetraphenylporphine** (TPP) as sensitizer ; *ca.* 1 equiv. of oxygen was absorbed. When the reaction mixture was chromatographed on silica gel, four main products were isolated, and identified as fluorenone, **1** hydroxy-9-fluorenone, 9-fluorenyl ethyl sulphoxide, and 9-fluorenyl ethyl sulphone. Diethyl disulphide was also detected by g.1.c. In a protic solvent such as methanol, considerable amounts of sulphoxides were obtained with

TABLE 3. Product ratio in the oxygenation of 1-ethylthiocyclopentene *(0-8* mmol) in *25* ml **of** MeCN-CCl, **(4** : 1)

^aIrradiation **for 3** h. **b** Irradiation for **7 h.**

The product distribution from 1-ethylthio-2-ethylhexene. 1, 1-diphenyl-2-methylthioethylene, and 1-ethylthiocyclopentene are summarized in Tables **1,** 2, and **3.** Apparent differences in the product distribution are smaller than the probable error of the analysis, though the solvent and duration of the photolysis may have some effect.

l,l-Diphenyl-2-methylthioethylene gives the same product ratio in each case: a Diels-Alder product, S-phenylbenzofuran-2-one, and a dioxetan cleavage type, benzophenone. The ratio of Diels-Alder- and dioxetan-type products in DCA-sensitized oxygenation is nearly identical with that obtained in the dye-sensitized oxygenation.

FIGURE. Quenching experiments for the dye-sensitized oxygenation of 1-ethylthio-2-ethylhexene $(3.87 \times 10^{-3} \text{ m})$ in MeCN-CCl₄(4:1). \bullet , with β -carotene $(3.74 \times 10^{-4} \text{ m})$; \circ none. [Rose Bengal] = 1.0 mg ml⁻

TABLE 4. Product ratio **in** the oxygenation of 9-fluorenyl ethyl sulphide **(1.5** mmol) in **25** ml of solvent

Sensitizer	Solvent	Product			
		Fluorenone	1-Hydroxy 9-fluorenone	Sulphoxide	Sulphone
Methylene Blue	Acetone	51	14	27	8
TPP	Benzene	38	16	36	10
DCA	$MeCN-CCl_4(4:1)$ with β -carotene	40	6	54	$\bf{0}$
	Acetone with β -carotene	43	19	38	

acceleration of the reaction rates, and with consumption of *0.5* equiv. of oxygen.

Also, the DCA-sensitized photo-oxygenation of **⁹⁴**uorenyl ethyl sulphide in MeCN-CCl, **(4** : **1)** gave a similar distribution of products after irradiation **for 3** h. In this case, β -carotene did not quench the reaction, indicating that singlet oxygen is not the reactive species.

We suggest that the dye-sensitized photo-oxygenation of these sulphides possibly proceeds *via* a superoxide intermediate formed by the reaction of singIet oxygen with the sulphide (Scheme).

(Received, **18th** *Augzcst* **1978;** *Corn.* **906.)**

¹C. S. Foote and J. **W.** Peters, *J. Amer. Chem. SOC.,* **1971, 93, 3795; E.** J. Corey and C. Ouannes, *Tetrahedron Letters,* **1976, 4263; K. Gollnik,** *Adv. Photochem.,* **1968, 6, 109.**

² J. Erikson, C. S. Foote, and T. L. Parker, *J. Amer. Chem. Soc.*, 1977, 99, 6455.
³ C. S. Foote, *Ann. New York Acad. Sci.*, 1970, 171, 139.
⁴ W. Ando, K. Watanabe, J. Suzuki, and T. Migita, *J. Amer. Chem. Soc.*, *Tetrahedron Letters,* **1975, 4127;** W. Ando and S. Kohmoto, *J.C.S. Chem. Comm.,* **1978, 120.**

⁶R. S. Davidson and **K.** R. Trethewey, *J.C.S. Perkin II,* **1977, 169.**