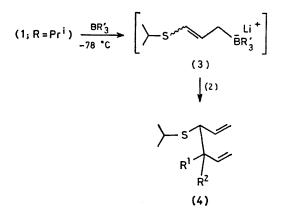

Regiocontrolled Head-to-tail Coupling of Alkylthioallyl Carbanions with Allylic Halides *via* Lithium Alkylthioallyl Borates

By YOSHINORI YAMAMOTO,* HIDETAKA YATAGAI, and KAZUHIRO MARUYAMA (Department of Chemistry, Faculty of Science, Kyoto University, Kyoto 606, Japan)


Summary Reaction of lithium alkylthioallyl borates (3), prepared from alkylthioallyl-lithium (1) and trialkyl-

boranes at -78 °C, with allylic halides (2) gives head-totail 1,5-dienes (4) in good yields. THE regiochemistry of reactions of heterosubstituted allyl carbanions is well recognized.¹ The alkylthio group generally directs electrophiles to the α -position (1). Reaction of the alkylthioallyl-lithium (1) with allylic halides (2) proceeds mainly via $\alpha - \alpha'$ (head-to-head) coupling.² Reaction of alkylthicallylcopper compounds with (2) affords $\gamma - \gamma'$

coupling products.³ We report a regiocontrolled head-totail $(\alpha - \gamma')$ coupling via lithium alkylthicallyl borates, probably (3).

We recently reported that lithium allylic borates, prepared from allylic lithium compounds with trialkylboranes, undergo regiocontrolled head-to-tail coupling with allylic halides and that regiocontrolled, electronically unimpeded coupling⁴ is achieved via lithium alkoxyallyl borates.⁵ Consequently, we have now examined the reaction of alkylthio-substituted allyl carbanions in the presence of trialkylboranes. The results are summarized in the Table.

sulphide (ca. 10 mmol) in dry ether (30 ml) was added s-butyl-lithium in pentane (1.04м, 10mmol) at -78°С under N_2 . After 30 min at -35 °C, the solution was again cooled to -78 °C. Addition of Bun-9-BBN (10 mmol) caused the formation of a white suspension. After 10 min at -78 °C, prenyl bromide (10 mmol) was slowly added. and the mixture was stirred overnight at room temperature. Water (5 ml) was added and the borane was oxidized with a

TABLE. Reaction of (3) with (2)^a

	Allylic halide (2)										
Entry	R ¹		x	Borane BR'3	α-γ'	Produ α-α'	ct/% ^Ϸ γ-γ΄	γ-a'	Yield/%° (isolated)		
1	Me	Me	Cl	Bu ⁿ -9-BBN ^d	93	7			79 (68)		
2	Me	Me	Cl	Bu ⁿ _s B	92	8			48		
3	Me	Me	Br	Bu ⁿ _s B	96	4		trace	78		
4	Me	Me	Br	None		55		45	70		
5	Me	н	Brf	Bu ⁿ -9-BBN ^d	> 99				90 (77)		
6	Me	н	Brf	Bu ⁿ ₃B	59	2	18	21	85 ` ´		
7	Me	H	Cl	Bu ⁿ ₃ B	51	3	15	31	55		
8	н	н	Br	Bu ⁿ -9-BBN ^d	8	;9 9	 ا	, <u>1</u>	60 (52)		

* All reactions were performed on a 1 mmol scale with the same procedure as described in the text. Isolation was carried out on a 10 mmol scale. ^b Identified by i.r., mass, and n.m.r. spectroscopy, elemental analysis, and/or comparison with authentic materials. Yields and product ratio were determined by g.l.c. The term α or γ indicates the coupling position. ^c Total yield of 1,5-dienes. ^d Buⁿ-9-BBN = 9-n-butyl-9-borabicyclo[3.3.1]nonane. ^e The normal reaction of (1) with prenyl bromide. ^f Contaminated with 3-bromobut-1-ene (16%).

The regioselectivity and the yield of (4) are both higher with the 9-BBN ate complexes than those with the tri-n-butylborates (entries 1 and 5 compared with 2 and 6). Generally, the bromides give better results than the chlorides (entries 3 and 6 compared with 2 and 7). The regiochemical difference between the ate complex and the simple allyl-lithium complex is clearly indicated in entries 3 and 4.

and condensed. Filtration through a silica column using hexane as eluant, followed by distillation, gave the desired 1,5-diene: 77%, b.p. 70-72 °C (10 mmHg). We thank the Ministry of Education, Science and Culture

slow stream of air. The organic layer was separated, dried,

and J.S.P.S. (Basic Chemical Research Foundation) for financial support.

The preparation of 3-isopropylthio-4,4-dimethylhexa-1,5diene is representative. To a solution of allyl isopropyl

(Received, 2nd October 1978; Com. 1053).

¹D. Seebach and K.-H. Geiss, 'New Applications of Organometallic Reagents in Organic Synthesis,' ed. D. Seyferth, Elsevier, Amsterdam, 1976, p. 1.

² J. F. Biellman and J. B. Ducep, *Tetrahedron Letters*, 1968, 5629; P. M. Atlani, J. F. Biellmann, S. Dube, and J. J. Vicens, *ibid.*, 1974, 2665; our own experiment (Table, entry 4).

³ K. Oshima, H. Yamamoto, and H. Nozaki, J. Amer. Chem. Soc., 1973, 95, 7926.

⁴ W. C. Still and T. L. Macdonald, J. Org. Chem., 1976, 41, 3620. ⁵ Y. Yamamoto and K. Maruyama, J. Amer. Chem. Soc., 1978, 100, 6282.