Seven-membered Ring Annelation via Cope Rearrangement of β -(2-Vinylcyclopropyl)- $\alpha\beta$ -unsaturated Ketones: a New Synthesis of (\pm) - β -Himachalene

By EDWARD PIERS* and EDWARD H. RUEDIGER

(Department of Chemistry, University of British Columbia, 2075 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 1W5)

Summary A total synthesis of (\pm) - β -himachalene (1), involving the Cope rearrangement of the substituted β -(2-vinylcyclopropyl) enone (9) as a key step, is described.

RECENTLY, we reported a new method for cycloheptane-type annelation based on the synthesis and thermal rearrangement of β -(2-vinylcyclopropyl)- $\alpha\beta$ -unsaturated ketones.¹ We report herein the application of this type of methodology to a total synthesis of the racemic modification of the bicyclic sesquiterpenoid (+)- β -himachalene (1). The compound (1), one of the major components of the essential oil of Himalayan deodar (*Cedrus deodara* Loud.), was shown to possess the structure^{2a} and absolute stereochemistry^{2b} as shown in (1).³

The acetal (2)[†] obtained (2,2-dimethylpropane-1,3-diol, MeC₆H₄SO₃H-p, MgSO₄, CH₂Cl₂) from acrolein, was converted by standard methodology (CHBr₃, NaOH-H₂O, EtOH, PhCH₂N+Et₃Cl⁻)⁴ into the dibromocyclopropane derivative (3), m.p. 75—77 °C. When a cold (-95 °C) solution of (3) in 5:1 tetrahydrofuran (THF)-hexamethylphosphoramide (HMPA) containing 2 equiv. of MeI was treated (dropwise) with 1 equiv. of BuⁿLi (hexane solution) and the resultant solution was warmed to 23 °C,⁵ a mixture of the diastereomeric methylated derivatives (4) and (5) (ratio 87:13) was obtained (90%). These two compounds could be separated cleanly by means of column chromatography on silica gel [isolated yield of (4), m.p. 24·5—26 °C, 74%].‡

Although hydrolysis of (4) proved to be somewhat problematic, it was eventually achieved efficiently with 88% formic acid at room temperature. The derived aldehyde (6), obtained in 72% yield, was allowed to react

† All compounds reported herein exhibited the expected spectral properties and gave satisfactory elemental analyses and/or molecular weight determinations (high resolution mass spectrometry).

[‡] The stereochemical assignments for (4) and (5) were based on analogy (ref. 5) and on the ¹H n.m.r. spectra. Details will be given in a full paper.

with isopropylidenetriphenylphosphorane in THF at -78 °C to afford the corresponding olefin (7) (70%). Successive treatment of a solution of (7) in 1:1 ether-THF with 2 equiv. of Bu^tLi (-78 °C, 30 min) and 1 equiv. of PhSCu⁶ (-20 °C, 30 min) afforded a solution of the cuprate reagent (8). When (8) was allowed to react $(-78 \degree C \text{ to } -20 \degree C)$, 15 min; 23 °C, 2 h) with 3-iodocyclohex-2-en-1-one7 (0.67 equiv.), the substituted β -cyclopropyl enone (9) was obtained in quantitative yield.

The Cope rearrangement of (9) proceeded smoothly when a solution of this compound in xylene was heated to reflux for 3 h. Methylation [lithium di-isopropylamide (LDA), THF-HMPA; MeI] of the resultant product (10) afforded (11) [90% from (9)]. Hydrogenation $[H_2, (Ph_3P)_3RhCl,$ PhH] of (11) gave (12) (95%) which was transformed [LDA, THF-TMEDA (tetramethylethylenediamine); (EtO)2-POBr⁸§] into the enol phosphate (13). Reduction (Li, $EtNH_2-Bu^{t}OH-THF)^{9}$ of (13) afforded [38% from (12)] (\pm) - β -himachalene, which exhibited spectral properties identical with those of the natural product.

We are grateful to Drs. V. Lukes (Czechoslovakia) and T. Norin (Sweden) for samples of (+)- β -himachalene. Financial support from the National Research Council of Canada and a N.R.C.C. Postgraduate Scholarship (to E. H. R.) are gratefully acknowledged.

(Received, 27th November 1978; Com. 1274.)

§ The use of diethyl phosphorochloridate in this reaction failed to produce any of the corresponding enol phosphate.

¹ E. Piers and I. Nagakura, Tetrahedron Letters, 1976, 3237; E. Piers, I. Nagakura, and H. E. Morton, J. Org. Chem., 1978, 43, 3630.

² T. C. Joseph and S. Dev, *Tetrahedron*, 1968, 24, (a) p. 3809; (b) p. 3841. ³ For previous syntheses of (\pm) - β -himachalene, see B. D. Challand, H. Hikino, G. Kornis, G. Lange, and P. de Mayo, J. Org. Chem., 1969, 34, 794; K. Næmura and E. Wenkert, Synth. Comm., 1973, 3, 45.

⁴ M. Makosza and M. Fedorynski, Synth. Comm., 1973, 3, 305.

⁵ Cf. K. Kitatani, T. Hiyama, and H. Nozaki, J. Amer. Chem. Soc., 1975, 97, 949; Bull. Chem. Soc. Japan, 1977, 50, 3288.

⁶ G. H. Posner, D. J. Brunelle, and L. Sinoway, Synthesis, 1974, 662.
⁷ E. Piers and I. Nagakura, Synth. Comm., 1975, 5, 193.
⁸ A. Gorecka, M. Leplawy, J. Zabrocki, and Z. Zwierzak, Synthesis, 1978, 474.

⁹ R. E. Ireland and G. Pfister, Tetrahedron Letters, 1969, 2145.