Hydrogenation of O-Methylated Carbon Monoxide on Clusters of the Iron Triad

By JEROME B. KEISTER

(Exxon Research and Engineering Co., Corporate Research Laboratories, P.O. Box 45, Linden, New Jersey 07036)

Summary The carbyne clusters $[HM_3(\mu_2\text{-}COMe)(CO)_{10}]$, M = Fe, Ru, or Os, formed by methylation of the corresponding $[HM_3(\mu_2\text{-}CO)(CO)_{10}]$ anion, react under mild conditions with hydrogen to give $[H_3M_3(\mu_3\text{-}COMe)-(CO)_9]$; $[H_3Ru_3(\mu_3\text{-}COMe)(CO)_9]$ reacts with CO: H_2 (1:1) under more vigorous conditions to form dimethyl ether and $[Ru_3(CO)_{12}]$.

ACTIVATION of metal-co-ordinated carbonyls by Lewis acids has been suggested as being important for the catalytic reduction of carbon monoxide.¹ Although many Lewis acid-base adducts of the type MCO \rightarrow A are known, most of these complexes are quite unstable and studies of their reactions are difficult. The *O*-methylated carbonyl cluster [HFe₃(μ_2 -COMe)(CO)₁₀], synthesized by treatment of the [HFe₃(μ_2 -CO)(CO)₁₀] anion with MeSO₃F,² possesses spectral properties similar to those of more conventional Lewis acid adducts, such as $[HFe_3(\mu_2\text{-}CO\cdot\text{BF}_3)(\text{CO})_{10}]^{-,3}$ $[HFe_3-(\mu_2\text{-}CO\cdot\text{HNEt}_3)(\text{CO})_{10}],^3$ and $[HFe_3(\mu_2\text{-}CO\cdot\text{H})(\text{CO})_{10}];^4$ additionally, methylation of the $[HFe_3(\mu_2\text{-}CO)(\text{CO})_{10}]$ anion induces structural changes expected for acid co-ordination to the bridging carbonyl.² We have synthesized the new complexes $[HM_3(\mu_2\text{-}COMe)(\text{CO})_{10}], M = \text{Ru or Os, and}$ have examined the hydrogenation of these clusters as examples of the reactions of Lewis acid-activated metal carbonyls.

The clusters $[HM_3(\mu_2\text{-}COMe)(CO)_{10}]$, M = Ru or Os, were synthesized by the reactions of the corresponding $[HM_3(\mu_2\text{-}CO)(CO)_{10}]$ anions† with $MeSO_3F$. The general synthesis from $M_3(CO)_{12}$ is given by equation (1). The compounds

$$[M_{3}(CO)_{12}] \xrightarrow{\text{NEt}_{3}} [HM_{3}(\mu_{2}\text{-}CO)(CO)_{10}]^{-} \longrightarrow (1)$$
$$[HM_{3}(\mu_{2}\text{-}COMe)(CO)_{10}]$$

 $[\]dagger$ Syntheses and characterizations of $[HM_3(\mu_2\text{-CO})(CO)_{10}]$ anions, M = Ru (B. F. G. Johnson, J. Lewis, P. R. Raithby, and G. Süss, submitted to *J.C.S. Dalton*) or Os (C. R. Eady, J. J. Guy, B. F. G. Johnson, J. Lewis, M. C. Malatesta, and G. M. Sheldrick, *J.C.S. Chem. Comm.*, 1976, 602) have recently been reported.

 $[HM_3(\mu_2-COMe)(CO)_{10}]$ have been fully characterized by their i.r., ¹H and ¹³C n.m.r., and mass spectra; additionally, the structure of $[HRu_3(\mu_2\text{-COMe})(CO)_{10}]$ (Figure 1) has

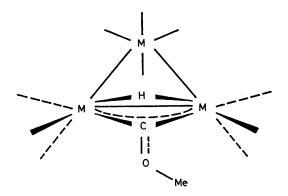


FIGURE 1. Structure of $[HM_3(\mu_2\text{-COMe})(CO)_{10}]$, M = Fe, Ru, or Os.

been confirmed by X-ray crystallography, the details of which will be published elsewhere. A variety of spectral and structural data indicates that the μ_2 -COMe ligand in these complexes is best regarded as a bridging carbyne. Thus, the ¹³C chemical shifts of the bridging carbon atoms of all three compounds (Os 346, Ru 328, and Fe 360 p.p.m.⁴) are similar to those observed for other metal-carbyne complexes, the bridging C-OMe stretching frequencies are $<1500 \text{ cm}^{-1}$, and the free energy of activation for rotation about the C-OEt bond of $[HOs_3(\mu_2\text{-}COEt)(CO)_{10}]$, prepared using EtSO₃F, is ca. 13.5 kcal mol⁻¹. Finally, the C-OMe bond length of 1.30 Å is intermediate between the values expected for a single and a double C-O bond.

The carbyne clusters $[HM_3(\mu_2\text{-COMe})(CO)_{10}]$ react readily with hydrogen under mild conditions (M = Ru or Fe:60 °C, 1 atm; M = Os: 120 °C, 1 atm) to form the corresponding $[H_3M_3(\mu_3\text{-COMe})(CO)_9]$. For M = Fe the reaction does not go to completion under 1 atm of H₂ and the product $[H_3Fe_3(\mu_3\text{-COMe})(CO)_9]$ decomposes to $[HFe_3\text{-}$ $(\mu_2$ -COMe)(CO)₁₀] in the absence of hydrogen. However, the Ru and Os analogues are stable even at 70 °C under carbon monoxide. The structures proposed for [H₃M₃- $(\mu_3$ -COMe)(CO)₉], M = Ru or Os, (Figure 2) are based upon

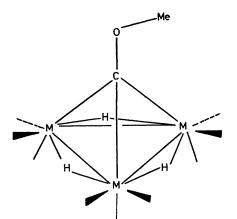


FIGURE 2. Proposed structure for $[H_3M_3(\mu_3-COMe)(CO)_9]$, M = Fe, Ru, or Os.

that established by X-ray crystallography for [H₃Ru₃- $(\mu_3\text{-}CMe)(CO)_9]^5$ and upon that proposed for $[H_3Os_3(\mu_3\text{-}CH)$ (CO),⁶ and are fully consistent with the i.r., ¹H and ¹³C n.m.r., and mass spectra. The ¹H n.m.r. spectrum of each displays two singlets of equal intensity with appropriate chemical shifts (M = Ru, τ 4.55 and 24.85; M = Os, τ 4.59 and 26.37). The ¹³C n.m.r. spectrum of [H₃Os₃- $(\mu_3$ -COMe)(CO)_g] displays two resonances at 167.0 (6C) and 166.4 p.p.m. (3C) due to the six equivalent equatorial and three equivalent axial carbonyls, respectively; the methyl signal occurs at 69.3 p.p.m. (1C), while the bridging carbon resonates at 205.2 p.p.m. The i.r. spectra for these compounds in the 2150-1900 cm⁻¹ region are very similar to those reported for $[H_3Ru_3(\mu_3-CMe)(CO)_9]$ and $[H_3Os_8]$ (μ₃-CH)(CO)₉].

The μ_2 to μ_3 transformation of the COMe ligand reduces the C-O bond order still further; reductive cleavage of the COMe group can be achieved under more vigorous conditions. When $[H_3Ru_3(\mu_3\text{-COMe})(CO)_9]$ is heated at 130 °C under CO: H_2 (1:1, 500 lb in⁻²) for 24 h, dimethyl ether and [Ru₃(CO)₁₂] are formed in high yield. This reaction completes the methyl promoted reduction of carbon monoxide.

(Received, 6th November 1978; Com. 1188.)

- ¹G. C. Demitras and E. L. Muetterties, J. Amer. Chem. Soc., 1977, 99, 2796.
- ² D. F. Shriver, D. Lehman, and D. Strope, J. Amer. Chem. Soc., 1975, 97, 1594. ³ J. R. Wilkinson and L. J. Todd, J. Organometallic Chem., 1976, 118, 199.

- ⁴ H. A. Hodali, C. A. Ammlung, and D. F. Shriver, J. Amer. Chem. Soc., 1978, 100, 5239.
 ⁵ A. J. Canty, B. F. G. Johnson, J. Lewis, and J. R. Norton, J.C.S. Chem. Comm., 1972, 1331.
 ⁶ R. B. Calvert and J. R. Shapley, J. Amer. Chem. Soc., 1977, 99, 5225.