³¹P N.M.R. Study of Tertiary Phosphine Complexes of Gold(1)

By CHARLES B. COLBURN, W. E. HILL, CHARLES A. MCAULIFFE, and R. V. (DICK) PARISH*† (Department of Chemistry, Auburn University, Auburn, Alabama 36830)

Summary The stoicheiometry and exchange behaviour of the gold(i)-tertiary phosphine systems [AuBr(L)] and $[Au(L)_n]Br$ depend critically on the steric and electronic properties of the ligand.

GOLD(I) is commonly two-co-ordinate, but evidence for higher co-ordination numbers is growing, particularly from ³¹P n.m.r.^{1,2} and ¹⁹⁷Au Mössbauer³⁻⁵ spectroscopy. With PPh₃,⁵ P(C₆H₄Me-p)₃,¹ or PEt₃² as ligand, two-, three-, and four-co-ordinate species have been detected. However, the ³¹P n.m.r. study we now present shows that the maximum co-ordination number attainable depends on the particular ligand used. Ligand-exchange relaxation also shows marked ligand dependence. We have employed P(C₆H₁₁)₃ (C₆H₁₁ = cyclohexyl), PBuⁿ₃, PMe₂Ph, and PMePh₂, which were added in various amounts to CHCl₃- or CH₂Cl₂-solutions of [Et₄N][AuBr₂]. The results are summarized in the Table.

TABLE. $^{31}\mathrm{P}$ Chemical shifts for gold(1) complexes (p.p.m. from $85\,\%$ H_3PO_4, $-\,80$ °C, CH_2Cl_2 solutions).

PR ₈	P:Au				
	1:1	2:1	3:1	4:1	>4:1
$P(C_{6}H_{11})_{3}$	-56.5	-63.8	a	а	а
PBu ⁿ ₃	-24.5	-32.7	-29.5	b	b
PMe,Ph	-6.1	-15.6	+22.7	+35.1	b
PMePh ₂	-18.0	-26.0	-13.8	+5.8	с

^a Free P(C₆H₁₁)₃ detected, T < -50 °C. ^b Rapid exchange at -120 °C. ^c Exchange, T > -80 °C.

At a P: Au mole ratio of 1.0:1 or less, the spectra were identical with those of [AuBr(L)] prepared independently. With $P(C_6H_{11})_3$ or PBu^n_3 at room temperature, addition of further small amounts of ligand led to the growth of a second signal, at the expense of, and downfield from the first. Conversion was complete at P:Au = 2.0:1. A CH_2Cl_2 -solution of $[AuBr\{P(C_6H_{11})_3\}]$ containing 1 mol equiv. of $P(C_6H_{11})_3$ had an electrical conductivity corresponding to a 1:1 electrolyte. The new species is thus $[Au(L)_2]Br$, and the corresponding chloride and perchlorate had essentially the same chemical shifts. On addition of further small amounts of ligand, the single resonance moved upfield towards that of the free phosphine. When the solution was cooled to -60 °C, for P(C₆H₁₁)₃ two resonances were observed corresponding to $[Au(L)_2]^+$ and the free phosphine. With PBun₃, however, the spectrum resolved below -80 °C into the $[Au(L)_2]^+$ signal and another at slightly higher field, not the free ligand, presumably $[Au(L)_3]^+$. At P:Au>3.0:1, a single signal was seen, moving to higher field with increasing concentration of the ligand. No signal due to the free phosphine was seen even at -120 °C, showing that $[Au(PBun_3)_3]^+$ undergoes extremely rapid exchange with the phosphine.

For $L = PMe_2Ph$ or $PMePh_2$, rapid exchange occurred at room temperature for $1 \cdot 0: 1 < P: Au < 4 \cdot 0: 1$, but on cooling four different species were detected, according to the stoicheiometry; these are reasonably assigned as [AuBr(L)]and $[Au(L)_n]Br$ (n = 2, 3, or 4). The signal for $[Au(L)_4]^+$ was at highest field but distinct from that of the free

† Present address: Department of Chemistry, The University of Manchester Institute of Science and Technology, Manchester M60 1QD.

The maximum co-ordination number and the exchange behaviour are thus functions of the ligand. With the bulky $P(C_{6}H_{11})_{3}$, only two ligands can be co-ordinated, but $[Au(L)_2]^+$ exchanges rapidly with the free ligand, presumably via a transient $[Au(L)_3]^+$ cation. With the less sterically demanding PBun₃, a third ligand can be bound but the tris-ligand complex undergoes rapid dissociative exchange at room temperature and, in the presence of an excess of the ligand, exchanges associatively very rapidly.

With these two ligands, no exchange occurs between [AuBr(L)] and $[Au(L)_2]^+$ at room temperature. With the softer PMe₂Ph and PMePh₂, four complexes are seen but all undergo rapid exchange at room temperature. The complexes $[Au(L)_4]^+$ exchange with free ligand, with PMe₂-Ph exchanging faster than PMePh₂. The behaviour of the Au+-PR₃ system thus depends critically on both the steric and electronic properties of the phosphine.

R.V.P. is on leave from the Department of Chemistry, U.M.I.S.T., Manchester M60 1QD.

(Received, 17th November 1978; Com. 1235.)

- ¹ E. L. Muetterties and C. W. Alegranti, J. Amer. Chem. Soc., 1970, 92, 4114.
 ² M. J. Mays, personal communication; P. A. Vergnano, Ph.D. Thesis, University of Cambridge, 1976.
 ³ C. A. McAuliffe, R. V. Parish, and P. D. Randall, J.C.S. Dalton, 1977, 1426.
 ⁴ G. C. H. Jones, P. G. Jones, A. G. Maddock, M. J. Mays, P. A. Vergnano, and A. F. Williams, J.C.S. Dalton, 1977, 1440.
 ⁵ P. V. D. V. J. D. B. J. C. M. Maddock, M. J. Mays, P. A. Vergnano, and A. F. Williams, J.C.S. Dalton, 1977, 1440.
- ⁵ R. V. Parish and J. D. Rush, Chem. Phys. Letters, submitted for publication.