Di(cyclopentadienyl)zirconium(II) Bis(phosphine) Complexes

By KERRIE I. **GELL** and JEFFREY **SCHWARTZ***

(Department of Chemistry, Princeton University, Princeton, N J 08540)

Summary Reactive **di(cyclopentadienyl)zirconium(n)** bis- (phosphine) complexes were prepared by phosphine ligand-induced reductive elimination from $[(\eta^5-C_5H_5)_2$ - $Zr(H)R$, $R = alkyl$.

LOW-VALENT metallocenes of the early transition metals display unusual structural patterns and great reactivity, which has hampered their synthesis. For example, preparation of Group **4** metallocenes, by alkali metal reduction of the corresponding metallocene dichloride, has rarely led to the desired compound. Under these conditions, the reduced species usually deactivates to give com-

plexes of the metal in a higher oxidation state, producing dimers, polymers, or species incorporating exogenous ligands.¹ We recently noted² that various ligands induce reductive elimination of an alkane from di(cyclopentadieny1) zirconium ('zirconocene') alkyl hydrides,³ (2), ultimately producing Zr^IV complexes derived from a precursor Zr^{II} metallocene. By ligand-induced reductive elimination we have prepared highly reactive Zr^{II} bis(phosphine) complexes **(1)** through reaction of **(2)** with tertiary phosphines. In this synthesis, hydrocarbon is the sole byproduct. These zirconium complexes are an efficient source of monomeric $(Cp)₂Zr.$

J.C.S. **CHEM. COMM., 1979 245**

A cold toluene solution $(-20 \degree C)$ or cyclohexane suspension (6 **"C)** of **(2)** was treated with a tertiary phosphine **(3** equiv.)[†] and the initially colourless solution rapidly darkened. When the mixture was warmed to room temperature, a quantitative yield (by n.m.r. spectroscopy) of $(Cp)₂ZrL₂$ (L = monophosphine) (1) and methylcyclohexane was obtained[†] (Scheme 1). Compound (1d) is stable at room temperature and has been isolated as air- and moisturesensitive black-green crystals§ $[{}^1H(\delta\ C_6D_6):$ 4.80 (t, J_{P-H} 1.5 Hz, 10H), 1.00 (m, 12H), and 0.69 (m, 4H); ¹³C(¹H) $(6 \text{ } C_6D_6)$: 88.66, 33.78, and 18.70 p.p.m.; ³¹P{¹H} (δ *vs.* H_3PQ_4 , C_6D_6): 60.9 p.p.m.]. The bis(phosphine) complexes **(la, b)** of simple monophosphines are not isolable, but they have spectral properties analogous to those of **(Id).** They are used *in situ* and are moderately stable at room temperature in solution in the presence of excess of phosphine.

a; $L_2 = 2Ph_2PMe$
 b; $L_2 = 2 PhPMe_2$
 c; $L_2 = Ph_2PCH_2CH_2PPh_2$ (diphos) d ; $L_2 = Me_2PCH_2CH_2PMe_2$ (dmpe)

SCHEME 1. Reagents: i, CO (1 atm.), 6.5 h; ii, diphos; iii, hex-3-
yne, *5* h; iv, octa-1,7-diene, *5* h, $90\frac{\%}{\circ}$; *v*, MeX, fast (X = OSO₂F, C1, or **I)** ; vi, BunC1, **1** h.

 $R = (Cyclohexyl)$ methyl; all reactions at room temp. For **(1a)**, in the presence of 2 equiv. of PPh₂Me. **(1a)** not isolated. Yields in the presence of 2 equiv. of PPh,Me. **(la)** not isolated. Yields were determined by n.m.r. spectroscopy, and, except where noted, were quantitative, based on $\text{(cp)}_2\text{Zr}(R)H$.

Reactivity patterns for zirconocene bis(phosphine) complexes are shown in Scheme **1.** Preliminary rate data indicate that oxidative addition of primary halogenoalkanes proceeds *ca*. 10³ times faster than does the corresponding oxidative addition to the Rh^I complex reported⁴ to be among the most active towards oxidative addition of alkyl halides *.6*

Zirconocene bis(monophosphine) complexes reversibly metallate aromatic solvents under ambient conditions6 (Scheme **2)** ; these conditions are at least as mild as those so

SCHEME 2. For compound (5) ratio of $m:p$, 2:1. No o-product was observed.

far noted' for aromatic solvent metallation by other reactive metal complexes. Although the solvent metallated species **(4),** an arylzirconium hydride, is not directly observable, it can be trapped by reaction with acetone.³ Accordingly **(la)** can be converted into *(5)* quantitatively in **3** h (room temperature; 5 equiv. acetone). No product of net metallation of phosphine ligands has been detected ; *7* however, it is possible that *(6)* could be too short-lived to be easily trapped because of reductive elimination [back to (1)] induced *intramolecularly* by its ortho-phosphino group (Scheme **2).**

Oxidative addition of cyclopentadienyl C-H bonds, which deactivates ' $\text{(cp)}_2\text{Zr}$ ' made by 'traditional' methods, also occurs in thermal decomposition of the zirconocene bis- (phosphine) complexes of monomeric phopshines. Complexes **(la)** and **(lb)** slowly decompose in solution at room temperature over several days, by loss of 1 equiv. of phosphine and 0.5 equiv. of H_2 to give the deep red diamagnetic zirconocene phosphine dimers **(7a, b)** (Scheme **3)** ,** whose structures were assigned on the basis of spectral data. The critical feature of the assignment is the observation of

SCHEME 3.i, **50** "C, **1** day, toluene or cyclohexane.

f Neither triphenylphosphine nor tricyclohexylphosphine partook in this reaction.

\$ When the *(a,* **1** -dideutesiomethylenecyclohexyl) zirconium compound was used, *a,* **1-dideuteriomethylcyclohexane** was the predominant alkane formed.

§ Satisfactory elemental analyses and mass spectral data have been obtained.

fi Treating **(la)** with [2H,]toluene gives no D-incorporation into the phosphine.

* * Prepared using **1** equiv. excess of phosphine; satisfactory elemental analyses were obtained.

the low-field chemical shift for $C(1)$, which shows phosphorus-carbon coupling $(J_{P-C} ca. 7 Hz)$, whereas the other carbons of the cp bridge show no observable 31P-13C coupling. While n.m.r. data establish the gross structure for **(7)** the relative arrangement of phosphine ligands *(cis-* or *trans-*) cannot yet be ascertained; for $(7b)$: ¹H (δ C₆D₆): $7.62 - 7.12$ (m, 5H), 6.12 (m, 1H), 5.50 (m, 1H), 5.26 (d, **JP-=** 1-5 Hz, 5H), 5.24 (m, lH), 3.97 (m, IH), 1.46 (d, J_{P-H} 5.2 Hz, 3H), and 1.20 (d, J_{P-H} 5.2 Hz, 3H); ³¹P{¹H} $(\delta \ vs. H_3PO_4, C_6D_6)$: 10.35 p.p.m.; ¹³C {¹H } (δC_6D_6 , phenyl group signals omitted for clarity); η^5 : σ cp: 190.42 (J_{P-C} 7.3 Hz), 111.18, 109.70, 104.92, and 100.90; η^5 cp: 99.36; $(CH_3)_2$ P: 18.40 *(J_{P-C}* 15.5 Hz), and 16.35 p.p.m. *(J_{P-C}* 15-5 Hz). This dimeric structure is analogous to that of niobocene, with which it is isoelectronic.⁸ The Zr^{III} dimer

(7b) is also obtained (in yields of *ca.* 50%) by ligand-induced elimination of H_2 when 'zirconocene' [prepared by autodecomposition of $\text{(cp)}_2\text{Zr(R)}H^3$ or by Na-Hg reduction of $\text{(cp)}_2\text{ZrCl}_2$] is treated with **(3b)** at 50 °C in toluene or tetrahydrofuran (THF). These observations suggest that the polymeric zirconocenes prepared by conventional routes may contain bridging hydrides and the η^5 : σ -bridging cyclopentadienyl ligand, analogous to niobocene, rather than the bridging fulvalenide ligand found for green stable titanocene⁹ (Scheme 3).

We thank the National Science Foundation for support and K.I.G. also acknowledges support from an Allied Chemical Fellowship.

(Received, 31st October 1978; *Corn.* 1164.)

¹ For example, see G. P. Pez, *J. Amer. Chem. Soc.*, 1976, 98, 8072, and references cited therein. (a) M. Yoshifuji, K. I. Gell, and J. Schwartz, *J. Organometallic Chem.,* **1978, 153, C15;** (b) **K.** I. Gell and J, Schwartz, *ibid.,* in the

press.
³ K. I. Gell and J. Schwartz, *J. Amer. Chem. Soc.*, 1978, 100, 3246.

²³K. I. Gell and J. Schwartz, *J. Amer. Chem. Soc.*, 1978, **100**, 3246.
⁴ J. P. Collman and M. R. MacLaury, *J. Amer. Chem. Soc.*, 1974, **96**, 3019.
⁵ Compare with reactivity reported for (cp)₂Zr(CO)₂ and (cp)

Demerseman, G. Bouquet, and M. Bigorne, *J. Organometallic Chem.*, 1977, 132, 223.

⁶ cis- and trans-1,2-Dimethylcyclohexane (1:1; 60%) were identified (g.l.c.-mass spectroscopy) on hydrolysis. Formation of

similar meta *cis-* and **trans-1,2-Dimethylcyclohexane** (I : **1** ; **60** %) were identified (g.1.c.-mass spectroscopy) on hydrolysis.

references cited therein.

*⁸***L. J.** Guggenberger and F. N. Tebbe, *J. Amer. Chem. SOL,* **1971, 93, 5924;** F. **N.** Tebbe and G. W. Parshall, *ibid.,* p. **3793.** @ **A.** Davison and S. S. Wreford, *J. Amev. Chem. SOC.,* **1974, 96, 3017.**