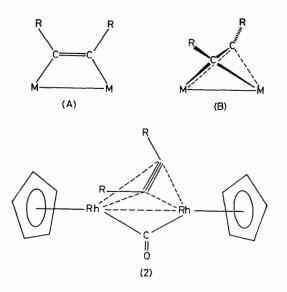
Interconversion of $\mu(\eta^2)$ - and $\mu(\eta^1)$ -Alkynyldirhodium Complexes

By Ron S. Dickson and Geoff N. PAIN


(Department of Chemistry, Monash University, Clayton, Victoria 3168, Australia)

Summary Treatment of $[(\eta^5-C_5H_5)_2Rh_2(CO)_2\{\mu(\eta^1-CF_3C_2-CF_3)\}]$ (1) with Me₃NO produces $[(\eta^5-C_5H_5)_2Rh_2(\mu-CO)$ $\{\mu(\eta^2-CF_3C_2CF_3)\}]$ (2) which forms adducts with CO, AsPh₃, P(OMe)₃, PMePh₂, Ph₂PCH₂CH₂PPh₂, SO₂, Me₂SO, and Bu^tNC; reaction of (2) with alkynes gives binuclear metallodiene and metallodienone complexes and with H₂ under mild conditions yields CF₃CH₂CH₂CF₃.

In alkyne-dimetal complexes, the alkyne can adopt either the $\mu(\eta^1)$ (A) or the $\mu(\eta^2)$ (B) arrangement. Recently, it has been suggested^{1,2} that interconversion of these two bonding modes might be an important process in catalysis and

cluster chemistry. We have observed such interconversions in our studies of some binuclear hexafluorobut-2-ynerhodium complexes.

Treatment of *trans*-[$(\eta^{5}-C_{5}H_{5})_{2}Rh_{2}(CO)_{2} \{\mu(\eta^{1}-CF_{3}C_{2}CF_{3})\}]^{3}$ (1) with trimethylamine oxide, Me₃NO, in acetone at room temperature yields the green complex [$(\eta^{5}-C_{5}H_{5})_{2}Rh_{2}-(\mu-CO) \{\mu(\eta^{2}-CF_{3}C_{2}CF_{3})\}$] (2), m.p. 136 °C [i.r.: v(CO) 1841 (¹³C, 1800) and v(C=C) 1592 cm⁻¹; n.m.r.: ¹H (CDCl₃, 28 °C) δ 5·79 (s, C₃H₅); ¹⁹F (CDCl₃, 28 °C) δ 52·16 (dd, CF₃, J_{Rh-F} 2·0 and 1·9 Hz) p.p.m.; ¹³C (CDCl₃, 39 °C) δ 205·1 (t, CO, J_{Rh-C} 41·5 Hz) and 90·4 (s, C₅H₅) p.p.m.; ¹³C (CD₂Cl₂-CH₂Cl₂, -90 °C) δ 207·6 (t, CO, J_{Rh-C} 40·8 Hz) and 90·1 (s,

 C_5H_5 p.p.m.]. The spectroscopic data indicate that (2) possesses a bridging carbonyl group and a $\mu(\eta^2)$ alkyne group. The multiplicity observed in the 19F n.m.r. spectrum indicates a twist of the alkyne group from the perpendicular, as has been observed in some $M_2(CO)_6(RC_2R)$ complexes (M = Fe or Co).⁴

Treatment of solutions of (2) with CO (1 atm, 20 °C) yields cis- and trans-(1). With ButNC, spontaneous reaction gives the fluxional species $[(\eta^5-C_5H_5)_2Rh_2(CO) (Bu^{t}NC) \{ \mu(\eta^{1}-CF_{3}C_{2}CF_{3}) \}$ (3), m.p. 110 °C [i.r.: $\nu(CO)$ 1975, ν (C=N) 2154, and ν (C=C) 1631 cm⁻¹; n.m.r.: ¹H $(CD_2Cl_2, 28 \, ^{\circ}C) \, \delta 5.40$ (s, C_5H_5) and 1.41 (s, Bu^{t}); ¹H $(CD_2Cl_2, -88 \,^{\circ}C) \,\delta 5.49$ (s, C_5H_5), 5.37 (s, C_5H_5), (coalescence at -18 °C), and 1.41 (s, Bu^t); ¹⁹F (CDCl₃-CFCl₃, 28 °C) δ 54·9 (br, s, CF₃) p.p.m.; ¹⁹F (CDCl₃-CFCl₃, -65 °C) 54.6 (br m, CF₃) p.p.m.; ¹³C (CD₂Cl₂, 57 °C) δ 191.8 (t, CO, J_{Rh-C} 41·2 Hz), 88·5 (s, C_5H_5), and 31·1 (s, Bu^t) p.p.m.; ¹³C (CD₂Cl₂, -63 °C) δ 192.0 (d, CO, J_{Rh-C} 82.4 Hz), 89.4

(s, C5H5), 87.1 (s, C5H5), and 31.3 (s, But) p.p.m.]. At room temperature, the carbonyl and isonitrile ligands of (3) are scrambling over the two rhodium atoms, presumably by the pairwise bridge closing and opening mechanism that has been proposed for $(1).^5$

The compounds $[(\eta^{5}-C_{5}H_{5})_{2}Rh_{2}(CO)(L) \{\mu(\eta^{1}-CF_{3}C_{2}CF_{3})\}],$ (4)—(8), are obtained by treatment of (2) with L (L = AsPh₃, P(OMe)₃, PMePh₂, SO₂, or Me₂SO, respectively). With Ph₂PCH₂CH₂PPh₂ (dppe), two compounds are isolated depending on the molar ratio of reactants. With equimolar amounts of (2) and dppe, the major product is $[(\eta^{5}-C_{5}H_{5})_{2}Rh_{2}(CO)(dppe) \{\mu(\eta^{1}-CF_{3}C_{2}CF_{3})\}]$ (9). With an excess of (2), a second product $[(\eta^5-C_5H_5)_2Rh_2(CO) \{\mu(\eta^1 CF_3C_2CF_3$]]₂(dppe) (10) is obtained. Compounds (4)-(10) are orange-red, air stable, solids each exhibiting a single terminal carbonyl peak in the i.r. spectrum together with a peak near 1630 cm⁻¹ which is assigned to the $\mu(\eta^1)$ alkyne group. The SO₂ complex (7) decomposes on heating to regenerate (2), and the Me₂SO complex (8) is converted into (2) by extraction of its chloroform solution with water. Oxidation of (4) in chloroform slowly yields (2) and Ph₃AsO.

Major products obtained from the reactions of (2) with RC = CR (R = CH₃, CF₃, or Ph) are the bridging metallodiene complexes $[(\eta^5-C_5H_5)_2Rh_2\{C_4(CF_3)_2R_2\}]$, and the bridging pentadienone complexes $[(\eta^5-C_5H_5)_2Rh_2\{C_4(CF_3)_2-C_5H_5\}$ R₂CO }].

In contrast to some co-ordinatively saturated $\mu - \eta^2$ alkyne-dimetal complexes studied by Muetterties et al.,6 (2) reacts readily with H₂ (1 atm, 20 °C) to give a variety of products including CF3CH2CH2CF3, (75-C5H5)3Rh3(CO)(CF3- C_2CF_3), $(\eta^5-C_5H_5)_3Rh_3(CO)_3$, $(\eta^5-C_5H_5)_4Rh_4(CO)_2$, and multinuclear hydrido-rhodium species.

We thank the Australian Research Grants Committee for financial support (R. S. D.), and the Australian Government for a Post-graduate Award (G. N. P.). We thank J. Weigold and M. Hughes for the n.m.r. spectra.

(Received, 4th December 1978; Com. 1292.)

¹ N. M. Boag, M. Green, J. A. K. Howard, J. L. Spencer, R. F. D. Stansfield, F. G. A. Stone, M. D. O. Thomas, J. Vicente, and P. Woodward, J.C.S. Chem. Comm., 1977, 930.

- ² Y. Iwashita, F. Tamura, and H. Wakamatsu, Bull. Chem. Soc. Japan, 1970, 43, 1520.
 ³ R. S. Dickson and H. P. Kirsch, Austral. J. Chem., 1972, 25, 2535.

^a D. L. Thorn and R. Hoffman, Inorg. Chem., 1978, 17, 126, and references therein.
^b L. J. Todd, J. R. Wilkinson, M. D. Rausch, S. A. Gardner, and R. S. Dickson, J. Organometallic Chem., 1975, 101, 133.
^b E. L. Muetterties, W. R. Pretzer, M. G. Thomas, B. F. Beier, D. L. Thorn, V. W. Day, and A. B. Anderson, J. Amer. Chem. Soc., 1978, 100, 2090.