Novel Transition Metal Complexes in Liquid Sulphur Dioxide

By Rüdiger Mews

(Anorganisch-Chemisches Institut der Universität, Tammannstrasse 4, D-3400 Göttingen, Germany)

Summary In liquid SO₂ very weak N- and O- donors [e.g., NSF₃, OPX₃ (X = F, NCO)] form transition metal complexes.

FROM SO₂-stabilised Lewis acids such as $F_5SbOSO,^1$ [(CO)₅-MSO₂]⁺ (M = Mn, Re),² and MeOSO^{+ 3} the SO₂ ligand can be easily replaced by very weak nucleophiles (e.g. NSF₃).⁴

This behaviour can be extended to SO_2 complexes of transition metals,⁵ and thus a novel transition metal complex chemistry with weakly basic and/or unstable ligands becomes possible in liquid SO_2 .

Tetrakis(thiazyl trifluoride) complexes can be formed quantitatively from the corresponding $\rm AsF_6^-$ salts, see equation (1). An increase in wavenumber for ν_{SN} and

$$[M(SO_2)_x]^{2+} (AsF_6)_2^- + excess NSF_3$$
(1)
(2)
$$\xrightarrow{SO_2} [M(NSF_3)_4] (AsF_6)_2$$
(1)
(3)

Complex [†]	Μ	$\nu_{\rm SN}/cm^{-1}$	$v_{\rm SF}/\rm cm^{-1}$	Colour
(3a)	Mn	1580	880,836	Colourless
(3b)	Fe	1590	883,837.5	Ochre
(3c)	Co	1598	885,840	Lilac
(3ď)	Ni	1610	885,840	Faint green
(3e)	Cu	1621	898,849	Faint blue
\hat{NSF}_{3} (gas)		1515	811,775	Ref. 6

 v_{SF} is observed on complex formation, as with addition of other Lewis acids to the N atom of (2). This increase parallels the decrease in metal atom radius (and hence the increase in its Lewis acid strength).

Reaction (1) is not confined to metals with stable SO₂ complexes, see equation (2). With excess of (2) the

$$\begin{array}{c} \operatorname{AgAsF}_{6} + \operatorname{excess}\ (2) \longrightarrow [\operatorname{Ag}(\operatorname{NSF}_{3})_{2}]\ (\operatorname{AsF}_{6}) \\ (4) \\ & & & & & \\ & & & & \\ \operatorname{high}\ \operatorname{vacuum} \ & & & \\ \operatorname{room}\ \operatorname{temp.}\ (2) \\ [(\operatorname{O}_{2}\operatorname{S})\operatorname{Ag}(\operatorname{NSF}_{3})](\operatorname{AsF}_{6}) \\ (6) \\ (5) \end{array}$$

bis(thiazyl trifluoride) complex (4) is formed, which easily loses a mole of (2) to give the stable compound (5). There is a sharp decrease in v_{SN} from 1551 cm⁻¹ in (4) to 1507 cm⁻¹ in (5). The Raman spectrum of (5) in SO_2 shows v_{SN} at 1555 cm⁻¹, implying that in liquid SO₂ the free co-ordination site is occupied by the solvent.

Complexes of very weakly basic or unstable phosphoryl derivatives OPX_3 (e.g. X = F, NCO) have never been

$$[\operatorname{Ni}(\operatorname{SO}_{2})_{2}](\operatorname{AsF}_{6})_{2} + 2 \operatorname{OP}(\operatorname{NCO})_{3} \\ \longrightarrow \{\operatorname{Ni}[\operatorname{OP}(\operatorname{NCO})_{3}]_{2}\}(\operatorname{AsF}_{6})_{2}$$

$$(7)$$

$$(1) + \operatorname{excess} \operatorname{OPF}_{3} \longrightarrow [\operatorname{M}(\operatorname{OPF}_{3})_{4}] (\operatorname{AsF}_{6})_{2}$$

$$(8)$$

$$\begin{array}{l} \mathbf{a},\,\mathbf{M}=\mathbf{M}\mathbf{n}\\ \mathbf{b},\,\mathbf{M}=\mathbf{N}\mathbf{i} \end{array}$$

co-ordination is through the O-atoms, as in other phosphoryl complexes $[v_{P0} \text{ in } (7) 1218 \text{ cm}^{-1}]$. OPF₃ is isoelectronic with NSF_3 ; however v_{PO} is shifted to lower wavenumber in (8) while v_{PF} increases (Table). This may be explained if the M-O-P group is bent (in contrast to the M-N-S group⁷). The addition to Lewis acids confers more single bond character to the P-O bond and partial positive charge to the P atom.

	TABLE	
	$v_{P=0}/cm^{-1}$	v_{PF}/cm^{-1}
O=PF ₃ (liquid) ^a	1395	982,875
(8a)	1360	1032,910
(8b)	1364	1037,913
F ₅ Sb-OPF ₃	1302	1073,933

^a M. L. Delwaulle and F. Francois, J. Chim. phys., 1949, 46, 87; H. S. Gutowsky and A. D. Liehr, *J. Phys. Chem.*, 1952, 20, 1652. ^b H. Selig and N. Aminadav, *Inorg. Nuclear Chem. Letters*, 1970, 6, 595; R. Mews, to be published.

This work was supported by Niedersächsisches Zahlenlotto.

(Received, 4th December 1978; Com. 1293.)

† All compounds [except (6)] were characterised by complete elemental analyses and vibrational spectroscopy.

¹ E. E. Aynsley, R. D. Peacock, and P. L. Robinson, Chem. and Ind., 1951, 1117; J. W. Moore, H. W. Baird, and H. B. Miller, J. Amer. Chem. Soc., 1968, 90, 1359. ² R. Mews, Angew. Chem., 1975, 87, 669.

³ P. E. Petersen, R. Brockington, and D. W. Vidrine, J. Amer. Chem. Soc., 1976, 98, 2660; G. A. Olah, D. J. Donovan, and H. C. Liu, *ibid.*, 2661; R. J. Gillespie, F. G. Riddell, and D. R. Slim, *ibid.*, 8069.

⁴ R. Mews and O. Glemser, Angew. Chem., 1975, 87, 208; Angew. Chem. Internat. Edn., 1975, 14, 186; R. Mews, Angew. Chem., 1978, 90, 561; Angew. Chem. Internat. Edn., 1978, 17, 530.

⁶ P. A. W. Dean, J. Fluorine Chem., 1975, 5, 499; C. D. Desjardins and J. Passmore, *ibid.*, 1975, 6, 379.
 ⁶ H. Richert and O. Glemser, Z. anorg. Chem., 1961, **307**, 328.
 ⁷ B. Buss, M. Noltemeyer, R. Mews, and O. Glemser, to be published.