Structures of Three Novel β-Lactams isolated from Streptomyces clavuligerus

By DAVID BROWN and JAMES R. EVANS[†]

[Fermentation Department and †Biochemistry Department, Glaxo-Allenburys Research (Greenford) Limited, Sefton Park, Stoke Poges, Bucks SL2 4DZ]

and RICHARD A. FLETTON

[Physical Chemistry Department, Glaxo-Allenburys Research (Greenford) Limited, Greenford, Middlesex UB6 0HE]

Summary The structures of three novel fused β -lactams isolated from culture fluids after growth of *Streptomyces clavuligerus* were shown by spectroscopic and degradative methods to be related to that of clavulanic acid.

A RECENT report¹ described the structure of clavulanic acid (1), a β -lactam antibiotic with a novel bicyclic ring system, isolated from *Streptomyces clavuligerus*. While working with fermentations of this organism, we have discovered three more β -lactam metabolites² and in this communication present evidence in support of structures (2), (3), and (4) for these compounds. We propose the name, clavam, for the 7-oxo-4-oxa-1-azabicyclo[3.2.0]heptane nucleus by analogy with the term, cepham, used in naming the cephalosporin antibiotics.³

2-Hydroxymethylclavam (2) was isolated as a colourless oil, $C_6H_9NO_3,~[\alpha]_D^{23}-166^\circ,~\nu_{max}$ (CHBr_3) 3560 (OH) and 1770 cm⁻¹ (β -lactam CO). The formyl ester (3) was isolated as a colourless oil, C7H9NO4, vmax (CHBr3) 1784 (β -lactam CO) and 1730 cm⁻¹ (ester CO). Clavam-2carboxylic acid (4) was a solvent extractable acid and was difficult to separate from clavulanic acid (1). The material was characterised as the methyl ester (6), a colourless oil, $C_7H_9NO_4$, ν_{max} (CHBr₃) 1785 (β -lactam CO) and 1754 cm⁻¹ (ester CO) and also as the diphenylmethyl ester (7) recrystallised from toluene as white needles, m.p. 146-147 °C; $[\alpha]_D^{23}-109^\circ; \,\nu_{max}$ (Nujol) 1780 (\$\beta\$-lactam CO) and 1750 cm^{-1} (ester CO). The parent acid (4) was recovered from (7) by catalytic hydrogenation. The acid was isolated as the amorphous sodium, lithium, or magnesium salt; analytical samples were not obtained.

The structures of these metabolites follow from their ¹H n.m.r. spectra (Table). In addition to the six protons assigned (H_a to H_f), (2) shows the protons of a primary alcohol group and (3) those of the formyl ester analogue, whereas methyl and diphenylmethyl derivatives of (4) show only the signals of the ester functions.

The three signals, H_d , H_e , and H_f , were assigned as the β -lactam protons since the observed chemical shifts and coupling constants ($J_{d,e} 2 \cdot 5 - 3$, $J_{d,f} ca. 0$, and $J_{e,f} 16 - 17$ Hz) show good agreement with the values obtained for clavulanic acid derivatives.¹ The signals H_a , H_b , and H_e formed an ABX system and the coupling constants ($J_{a,b}$ 7-8, $J_{b,c} 11 - 12$, and $J_{a,c} 4 \cdot 5 - 6$ Hz) indicated a -CH₂CH-group. The part structure (8) was inferred from the spectra of (2) and (3), in which the presence of the oxygen atom follows from the chemical shift of the H_a proton.

The part structure (8) was confirmed by treatment of (2) with dilute acid, giving 3-aminopropan-1,2-diol (9), characterised as its tribenzoyl derivative (10), m.p. 134–135 °C, $[\alpha]_{23}^{23} + 29\cdot3^{\circ}$. The i.r. and ¹H n.m.r. spectra of (10) were identical to those of authentic racemic material.⁴

	Table. ¹ H N.	m.r. data of clay	vams (2), (3), ar	nd (5)(7).	
Assignment	Chemical shifts $(\delta/p.p.m.)$				
	(2) [(CD ₃) ₂ CO]	(3) (CDCl ₃)	(5) (D ₂ O)	(6) (CDCl ₃)	(7) (CDCl ₃)
Ha	4.42	4.57	4.74	4.84	4.90
H _b	3.86	4.00	4.19	4.12	4.12
H _c	2.91	2.80	3.04	3.10	3.06
Hd	5.32	5.32	5.52	5.48	5.47
He	3.28	3.30	3.44	3.31	3.29
H	2.71	2.81	2.92	2.86	2.85
CH,	3.68	4.24			
-OH	4.23				
CHO		8.08			-
-CO _• Me				3.76	
-CO ₂ CHPh ₂					7.31, 6.92

The stereochemistry of these compounds has not been determined. These compounds exhibit antibiotic activity of a different type from clavulanic acid. Whereas clavulanic acid is an inhibitor of β -lactamase and of bacterial growth, 2-hydroxymethylclavam, 2-formyloxymethylclavam, and methyl clavam-2-carboxylate exhibit activity against a number of species of fungi, particularly fungal plant pathogens.

(Received, 6th December 1978; Com. 1303.)

¹ T. T. Howarth, A. G. Brown, and T. J. King, J.C.S. Chem. Comm., 1976, 266.

² Ger. P. 2725690.

^a R. B. Morin, B. G. Jackson, E. H. Flynn, and R. W. Roeske, J. Amer. Chem. Soc., 1962, 84, 3400.
^a R. B. Bruce, L. Turnbull, J. Newman, and J. Pitts, J. Medicin. Chem., 1966, 9, 286.