Reductive Deamination of Alkyl and Aryl Primary Amines *via* 1,4-Dihydropyridines and a Note on the Mechanism of Reductive Deamination of Benzylamine *via* a 1,2-Dihydropyridine¹

By ALAN R. KATRITZKY,* KAROLY HORVATH, and BERNARD PLAU (School of Chemical Sciences, University of East Anglia, Norwich NR4 7TJ)

Summary Alkyl- and aryl-amines react with 2,3,5,6tetraphenylpyrylium cations to yield pyridinium salts which are reduced regiospecifically by NaBH₄ to the 1,4-dihydropyridines which thermolyse at 180—200 °C (for the alkyl derivatives) to give the corresponding alkanes in synthetically useful overall yields (some aryl derivatives thermolyse at 300 °C to give the corresponding arenes); ²H n.m.r. spectroscopy is used to demonstrate the radical nature of the thermolysis of 1-benzyl-2,4,6triphenyl-1,2-dihydropyridine.

WE have shown² that allylamines, benzylamines, and heteroarylmethylamines can be reductively deaminated by a three-step process: (i) conversion by triphenylpyrylium cation into the pyridinium salt, (ii) reduction by borohydride to the 1,2-dihydropyridine $[cf. (1) \rightarrow (2)]$, and (iii) pyrolysis. Pyrolysis of similar 1,2-dihydropyridines (5) derived from alkylamines or arylamines failed.³ We initially attributed this to the possibility of allowed electrocyclic reactions $[cf. (2) \rightarrow (3)]$ for the former class, but not the latter. Attention was therefore directed to the preparation of 1,4-dihydropyridines for which electrocyclic elimination of an N-alkyl or N-aryl substituent should be easier.

Attempts to prepare 1,4-dihydropyridines (6) in good yield from 2,4,6-triphenylpyridinium salts having failed,^{3b} we resorted to steric direction⁴ of the attack by borohydride

(A)

(B)

δ/p.p.m.

[†] Satisfactory analytical data were obtained for all new compounds reported.

10 9 8 7 6 5 4 3 2 1 0

to the 4-position. 2,3,5,6-Tetraphenylpyrylium tetrafluoroborate (7) reacts readily with a series of amines to yield the pyridinium salts (8); the n-hexyl, n-heptyl, noctyl, benzyl, p-chlorobenzyl, phenyl, p-chlorophenyl, 2-pyridyl, and 2-pyrimidinyl derivatives were prepared[†] in an average yield of 80%.

The tetraphenylpyridinium fluoroborates (8) were smoothly reduced by sodium borohydride to the corresponding 1,4-dihydropyridines (9); the structures were confirmed by analysis and by spectral data, ^{3b} in particular all displayed in the ¹H n.m.r. spectrum a singlet for two hydrogen atoms near δ 3.9 attributed to the two equivalent CH₂ protons of the 4-position of the ring. The average yield for the nine 1,4-dihydropyridines prepared was 71%.

On pyrolysis at 180-200 °C, the compounds in which the 1-substituent was attached by an sp^3 -hydridised carbon thermolysed smoothly to give 2,3,5,6-tetraphenylpyridine and the corresponding hydrocarbon in the yields indicated: n-hexane (58%), n-heptane (52%), n-octane (88%), toluene (44%), p-chlorotoluene (62%), and ethylbenzene (64%). Thermolysis of the 1-aryl and 1-heteroaryl derivatives required a temperature of 300 °C to give benzene (54%) and pyrimidine (26%).

Although the development of the foregoing synthetic route was a result of the postulation of the electrocyclic mechanism $(2) \rightarrow (3) [\rightarrow (4)]$, we now know that this route is incorrect, at least for the pyrolysis of 1-benzyl-2,4,6triphenyl-1,2-dihydropyridine (2). Reduction of the pyridinium salt (1) with $NaBD_4$ gave the 2-deuterio-derivative [(2); L = D] which pyrolysed to give monodeuteriotoluene. The electrocyclic mechanism should give appreciable quantities of both side-chain [(4); L = H, L' = D] and ortho-labelled toluene [(4); L = D, L' = H]. However, only the former was present, as was shown by ¹H and ¹³C n.m.r. spectroscopy (see ref. 3b) and, most convincingly, by the ²H n.m.r. spectrum (Figure). This indicates that the reduction proceeds by homolysis of the N-C bond, possibly followed by a radical chain.

We thank Dr. P. Beynon (Jeol) for the ²H n.m.r. spectral measurements, the European Science Exchange Programme and the Leverhulme Foundation for fellowships to B.P. and K.H., respectively, and Professor Sir Derek Barton, F.R.S., for an interesting discussion.

(Received, 22nd December 1978; Com. 1369.)

¹ Cf. A. R. Katritzky, A. M. El-Mowafy, and R. C. Patel, in the series 'Heterocycles in Organic Synthesis,' pt. 29, in preparation.
² A. R. Katritzky, J. Lewis, and P.-L. Nie, J.C.S. Perhin I, in the press.
³ (a) P.-L. Nie, Ph.D. Thesis, University of East Anglia, 1977; (b) B. Plau, Ph.D. Thesis, University of East Anglia, 1978.

- ⁴ Cf. K. Wallenfels and M. Schülly, Annalen, 1959, 621, 86, 106, 215.