Platinum–Diphosphine–Tin Systems as Active and Selective Hydroformylation Catalysts

By YASUZIRO KAWABATA,* TERUYUKI HAYASHI, and IKUEI OGATA

(National Chemical Laboratory for Industry, Honmachi, Shibuya-ku, Tokyo 151, Japan)

Summary The activity of a platinum dichloride-phosphine-tin(II) chloride complex as a hydroformylation catalyst was dramatically enhanced by the use of diphosphine ligands which were capable of forming a strained seven-membered chelate ring; the best ligand was trans-1,2-bis(diphenylphosphinomethyl)cyclobutane, which afforded hexanals (n/iso = 99/1) from pent-1-ene with a much higher reaction rate than by the use of HRh(CO)-(PPh_a)_a.

It has been reported that the $PtCl_2(PPh_3)_2$ -SnCl₂ system is a good catalyst for the selective hydroformylation of

FIGURE 1. Hydroformylation of pent-1-ene. See Table for experimental conditions. Quantity of Pt complex used was $3\cdot2\,\times\,10^{-5}$ mol.

1-olefins to n-aldehydes, although it is not as active as rhodium catalysts,¹ and that the activity is reduced by the use of chelating diphosphines such as 1,2-bis(diphenyl-phosphino)ethane.²

We have found, however, that the reaction rate and the selectivity of n-aldehyde formation strongly depend on the methylene chain length of the chelating ligand, Ph2P[CH2],-PPh₂, as shown in Figure 1.³ The rate reached a maximum at n = 4 and was further improved by restricting the conformational flexibility of the n = 4 methylene chain by introducing a ring structure into the chain as shown in the Table. Thus, the platinum complex containing (DP)₂, which has a rigid cyclobutane skeleton, was more active and more selective to n-aldehyde formation than HRh(CO)-(PPh₃)₃ (compare run 6 vs. 7 and 8 vs. 9). Excess of phosphine retards the reaction, and the maximum rate was observed at P/Pt = ca. 3 (atomic ratio) when using $(DP)_2$. Hydrogenation and isomerization of 1-olefins could be depressed by lowering the reaction temperature (compare runs 6 and 8) and controlling the CO and H₂ pressure (compare runs 4 and 5).[†]

FIGURE 2. Selectivity to n-aldehyde vs. chain length of 1-olefins and ring size of diphosphines. See Table for experimental conditions.

TABLE.	Hydroform	ylation of	pent-l-ene	by the use of	i plat	inum comp	lex cata	lysts.ª
--------	-----------	------------	------------	---------------	--------	-----------	----------	---------

Yield/%

Run	Catalyst ^b	Temp. /°C	Time /h	Conver- sion/%	Relative rate ^c	Aldehyde (n/iso)	n-Pentane	Pent-2-ene	Polymer
1	PtCL-2PPh.	100	24	3.8	1.0	3.0(92/8)	0.3	0.5	0.0
2	PtCl,-Ph,P[CH,],PPh,	100	18	100	7.5	$71 \cdot 1 (91/9)$	13.9	15.0	0.0
3	PtCl _o -(DP)	100	18	100	6.0	75.9(90/10)	13.3	10.4	0.4
4	PtCl _s -(DP)	100	5	100	20.0	74.0 (97/3)	8.8	14.3	$2 \cdot 9$
5	PtCl,-(DP),d	100	4	99	21.0	87.7 (96/4)	$2 \cdot 9$	8.4	0.0
6	PtCl _a -(DP).	100	3	100	31.0	79.0(99/1)	6.4	13.4	0.2
7	HRh(CO)(PPh.).	100	4	100	23.5	100.0(54/46)	0.0	0.0	0.0
8	PtCl _o -(DP)	70	2	100	40 ·0	88.6 (99/1)	3.5	7.6	0.3
9	HRh(CO)(PPh ₃) ₃	70	5	100	12.0	98 •9 (70/30)	0.0	1.1	0.0

^a Carried out in a 50 ml stainless steel autoclave (SUS-316): pent-1-ene, 3 ml; benzene, 18 ml; Pt(PhCN)₂Cl₂, $3 \cdot 2 \times 10^{-6}$ mol for runs 1 - 7 and $3 \cdot 2 \times 10^{-6}$ mol for runs 8 and 9. Pt:P:Sn (atomic ratio) = 1:2:5. Initial pressure, 100 atm (CO/H₂ = 1) at 20 °C except run 5. ^b (DP): Ph₂PCH₂CHCHXCH₂PPh₂ (trans); (DP)₄, X = -[CH₂]₄-; (DP)₃, X = -[OCMe₂O]-; (DP)₅, X = -[CH₂]₂-. ^c The maximum rate of pressure drop in run 1 was taken as the unit rate. ^d Initial pressure, 200 atm (CO/H₂ = 3) at 20 °C.

[†] Work is still in progress on the optimization of conditions.

Figure 2 shows that the linearity of the resulting aldehydes increased with an increase in the chain length of the 1-olefin and with a reduction in the ring size of the diphosphine. In the industrially useful hydroformylation of propene where positional isomerization is immaterial, the final yield of n-butanal from propene is much higher than that obtained with a Rh catalyst under our reaction

¹ C. Hsu and M. Orchin, J. Amer. Chem. Soc., 1975, 97, 3553. ² I. Schwager and J. F. Knifton, J. Catalysis, 1976, 45, 256. ³ An exceptionally low selectivity at n = 3 was also observed in a Rh-diphosphine-catalysed α -hydroformylation of some $\alpha\beta$ unsaturated esters (M. Tanaka, T. Hayashi, and I. Ogata, Bull. Chem. Soc. Japan, 1977, 50, 2351).

conditions. A loose *cis*-co-ordination of the diphosphine which can barely form a strained and rigid seven-membered chelate ring would easily provide a vacant site for the activation of the reactants.

(Received, 12th December 1978; Com. 1323.)