Reaction of η-Tetracarbonyldicyclopentadienyldiruthenium with Phosphine and Phosphite Ligands

By JAMES A. S. HOWELL* and ANTHONY J. ROWAN

(Chemistry Department, University of Keele, Keele, Staffordshire ST5 5BG)

Summary Reaction of $(cp)_2Ru_2(CO)_4$ ($cp = \eta^5-C_5H_5$) with $P(OR)_3$ (R = Me, Et, or Bu^n) proceeds by R-O bond cleavage to yield (cp) $Ru(CO)_2R$ derivatives; reaction with PPr₃ yields, in addition to (cp) $_2Ru_2(CO)_3(PPr_3)$, products also derived from cleavage of the Ru-Ru bond.

DURING our work on the fluxional nature of isonitrile complexes of the $(cp)_2M_2(CO)_4$ series (1, M = Fe; 2, M = Ru; $cp = \eta^5 \cdot C_5H_5$).¹ we wished to prepare complexes of the types $(cp)_2Ru_2(CO)_3(PR_3)$ (3) and $(cp)_2Ru_2(CO)_3[P(OR)_3]$ (4) to enable a comparison with the well-documented iron complexes.² However, we have found that attempts at thermal substitution of (2) with PR₃ and P(OR)₃ ligands result instead in a novel series of bond cleavage reactions.

Thus, reaction of a slight excess of $P(OR)_3$ with (2) in xylene at 140 °C over a period of 24 h results in essentially quantitative conversion into the alkyl derivatives (cp)Ru-(CO)₂R [R = Me, Et, or Buⁿ (5a--c)]. I.r. (5b; $\nu_{co} = 2016$ and 1958 cm⁻¹) and mass spectroscopic measurements (5b; $M^+ = 252$ based on ¹⁰²Ru) are identical with values observed for an authentic sample.³ No trace of the

simple substitution product (4; R = Et) was observed either on purification or during the reaction, although its intermediacy in the reaction cannot be discounted. Because of difficulty in separation of these rather volatile compounds from organic impurities and from the traces of (cp)Ru(CO)-[P(OR)₃]R also formed, we have isolated as pure crystalline compounds the PPh₃ substitution products (cp)Ru(CO)- $(PPh_3)R$ (**6a**-**c**; R = Me, Et or Bu^n) by reaction of PPh_3 with the initially obtained impure (5a-c), followed by column chromatography. I.r. and n.m.r. data are shown in the Table, and, in the case of (6b), are identical with a specimen prepared by PPh₃ substitution of authentic (5b). It is of interest to note that in (6b and c), the α -CH, protons form an AB system (confirmed by decoupling) due to proximity to the chiral ruthenium centre. Computer simulated spectra for (5b) confirm the ABX₃P nature of the spectrum.

Reaction of (2) with an excess of PPr₃ in xylene at 140 °C over 48 h, followed by chromatography on alumina using CH_2Cl_2 , yields the expected substitution product (3; R = Pr) (50%),[†] together with a product identified as

[†] The fluxional properties of this molecule will be discussed elsewhere.

TABLE. Spectral data

		δ/p.p.m.b	
Compound	v_{c-o}/cm^{-1a}	cp	Other
(cp)Ru(CO)(PPh _e)R			
(6a; R = Me)	1935	4.99°	2·08 (Me, J _{P-H} 0·5 Hz) ^d
$(\mathbf{6b}; \mathbf{R} = \mathbf{Et})$	1933	4.98c	2.4 (m, CH ₂), 0.52 (t, Me) ^d
$(\mathbf{6c}; \mathbf{R} = \mathbf{Bu^n})$	1928	4.95°	$2.35 (m, CH_2), 0.73 - 1.40 (m, Pr)^d$
(Cp)Ru(CO)(PPr.)Cl (7)	1953	5.03°	1.22-1.98 (m, CH ₂ CH ₂), 1.03 (t, Me)
(cp)Ru(CO)(PPr.)Br (8)	1958	5.04°	1.33-2.01 (m, CH ₂ CH ₂), 1.03 (t, Me)
$(cp)_2 Ru_2(CO)_3(PPr_3)$ (3)	1943 (term.), 1762 (bridge)	5.22, 4.99	1.40 (m. CH ₂ CH ₂), 0.98 (t, Me)

^a Hexane solution. ^b CDCl₃ solution; Me₄Si as standard. ^c J_{P-H} 0.4 Hz. ^d PPh₃ multiplet at δ 7.40.

 $(cp)Ru(CO)(PPr_3)Cl$ (7) (50%). Use of CH_2Br_2 yields the analogous bromide (8). Thus, (7) is not an initial reaction product, and i.r. analysis of the reaction mixture before chromatography reveals a single absorption at 1930 cm^{-1} clearly assignable to a (cp)Ru(CO)(PPr₃)X derivative. Observation of a phosphorus-coupled doublet (J 32.7 Hz)at τ 22.2 in the ¹H n.m.r. spectrum of the crude product identifies this intermediate as the hydride $(\eta^{5}-Cp)Ru(CO)$ -(PPr₃)H. Other workers have recently shown that pyrolysis of Os₃(CO)₁₁(PEt₃) yields products resulting from both carbon-to-metal hydrogen transfer and P-C bond cleavage,4

and that pyrolysis of Os₃(CO)₁₁[P(OMe)₃] yields products resulting from carbon-to-metal hydrogen transfer and C-O bond cleavage.⁵ Surprisingly, (cp)₂Os₂(CO)₄ is unreactive to $P(OR)_3$ ligands and PPr_3 under the conditions used for reaction with (2).

We thank the S.R.C. for a studentship (A. J. R.) and Johnson-Matthey Co. for the loan of ruthenium and osmium salts.

(Received, 6th February 1979; Com. 110.)

1 J. A. S. Howell, T. W. Matheson, and M. J. Mays, J.C.S. Chem. Comm., 1975, 865; J. A. S. Howell and A. J. Rowan, J. Organo-

metallic Chem., in the press. ² F. A. Cotton, L. Kruczynski, and A. J. White, Inorg. Chem., 1974, 13, 1402; R. J. Haines and A. L. DuPreez, *ibid.*, 1969, 8, 1459; D. C. Harris, E. Rosenberg, and J. D. Roberts, J.C.S. Dalton, 1974, 13, 1402, R. J. Hanles and A. D. Durleez, Iota., 1909, 6, 1409, 7
D. C. Harris, E. Rosenberg, and J. D. Roberts, J.C.S. Dalton, 1974, 2398.
A. Davison, J. A. McCleverty, and G. Wilkinson, J. Chem. Soc., 1963, 1133.
A. J. Deeming, J. Organometallic Chem., 1977, 128, 63.
A. G. Orpen and G. M. Sheldrick, Acta Cryst., 1978, 34B, 1992; J. M. Fernandez, B. F. G. Johnson, J. Lewis, P. R. Raithby, and C. M. Sheldrick, itid. p. 1004.

G. M. Sheldrick, ibid., p. 1994.