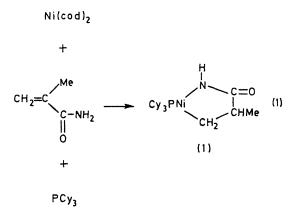
Formation of the Nickela-cyclic Amide Complex 1-Tricyclohexylphosphino-4methyl-1,2-azanickelacyclopentan-3-one by the Reaction of Methacrylamide with Bis(cyclo-octadiene)nickel in the Presence of Tricyclohexylphosphine

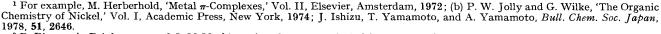
By TAKAKAZU YAMAMOTO,* KOJI IGARASHI, JUNICHI ISHIZU, and AKIO YAMAMOTO* (Research Laboratory of Resources Utilization, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 227, Japan)


Summary The reaction of bis(cyclo-octadiene)nickel with methacrylamide in the presence of tricyclohexylphosphine (PCy₃) gives a nickela-cyclic amide complex

 (PCy_3) NiNHCOCHMeCH₂ (1), which affords 3-methyl-succinimide on reaction with CO.

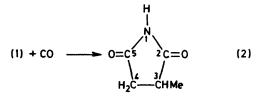
THE reaction of olefins with transition metal compounds generally affords π -type complexes¹ and formation of other types of complexes such as a metallacyclic complex² is exceptional. We now report the formation of a nickelacyclic amide by the reaction of methacrylamide (maa) with bis(cyclo-octadiene)nickel [Ni(cod)₂] in the presence of tricyclohexylphosphine (PCy₃).

J.C.S. CHEM. COMM., 1979


When a mixture of Ni(cod)₂ (2·1 mmol), maa (4·0 mmol), and PCy₃ (2·1 mmol) in tetrahydrofuran (7 ml) was stirred at room temperature for 2 h, a yellow-green precipitate (580 mg) was obtained which was recrystallized from toluene to give yellowish-green crystals of the nickelacyclic amide complex (1) [reaction (1)].

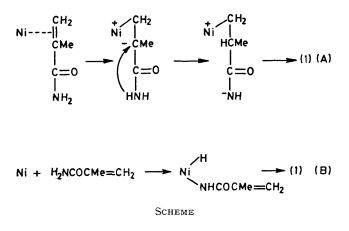
The i.r. spectrum (KBr) of (1) is quite different from those of π -type $\alpha\beta$ -unsaturated amide complexes of Ni such as Ni(π -acrylamide)₂(bpy)³ (bpy = 2,2'-bipyridyl) and $Ni(\pi-maa)(PPh_3)_2$ (2) (vide infra) showing a singlet v(N-H)absorption at 3400 cm⁻¹ and only one sharp strong band at 1568 cm⁻¹ which is characteristic of cyclic amides.⁴ The ¹H n.m.r. spectrum (C_6D_6) of (1) shows a proton peak at δ 5.90, assignable to NH, which is absent if $[NN^{-2}H_{2}]$ maa is used as the starting material. Assignment of other peaks was not possible owing to overlapping of the CH, CH_2 , and CH_3 signals in the metallacycle and those of the PCy_3 -protons. The ¹H n.m.r. spectrum (C_6H_6) of the π -type complex (2) shows an NH₂ peak (2H) at δ 4.23.

Addition of excess of PCy_3 to an ethereal solution of (1) did not lead to the liberation of maa. Complex (1) reacted instantly with CO at room temperature to give 3-methylsuccinimide quantitatively [reaction (2)]. It is known that metallacyclic compounds give cyclic ketones on reaction with CO.⁵ The reaction of CO with $[{}^{2}H_{2}]$ -(1), prepared by using [NN-2H2]maa, gave 3-methyl[1,3-2H2]succinimide (n.m.r., i.r.), supporting the metallacyclic structure. The Co₂(CO)₈-catalysed preparation of 3-methylsuccinimide


[†] Satisfactory elemental analyses were obtained.

² P. Binger, A. Brinkmann, and J. McMeeking, Annalen, 1977, 1065; M. J. Doyle, J. McMeeking, and P. Binger, J.C.S. Chem. Comm., 1976, 376; R. H. Grubb and A. Miyashita, J. Amer. Chem. Soc., 1978, 100, 7416.
³ T. Yamamoto, A. Yamamoto, and S. Ikeda, J. Amer. Chem. Soc., 1971, 93, 3350.
⁴ C. J. Pouchert, 'The Aldrich Library of Infrared Spectra,' Aldrich, Milwaukee, Wisconsin, 1975, p. 402.
⁵ J. X. McDermott, M. E. Wilson, and G. M. Whitesides, J. Amer. Chem. Soc., 1976, 98, 6529; R. H. Grubbs, A. Miyashita, M. Liu,

and P. Burk, ibid. 1978, 100, 2418.


⁶ J. Falbe and F. Korte, Chem. Ber., 1962, 95, 2680; R. F. Heck, 'Organotransition Metal Chemistry,' Academic Press, New York, 1974.

from maa and CO under severe conditions has been reported⁶ and the result obtained here suggests the formation of an intermediate cobaltacyclic amide under these catalytic conditions.

In contrast to the reaction of Ni(cod), with maa in the presence of PCy_3 , a similar reaction in the presence of triphenylphosphine gave yellow needles of a normal π -type complex Ni(π -maa)(PPh₃)₂ (2) in 82% yield,[†] the i.r. spectrum (KBr) of which shows amide bands at 1645 and 1580 cm⁻¹. The reaction of (2) with CO gave Ni(CO)₂-(PPh₃)₂ and maa quantitatively.

The formation of (1) seems to proceed through an intramolecular Michael reaction type shift of H from NH₂ to the α -carbon in a polarized canonical structure of an Ni-maa π -complex (Scheme, A) or an oxidative addition of the N-H bond of maa to Ni (Scheme, B).

The authors thank Dr. S. Komiya for his discussions.

(Received 21st February 1979; Com. 177.)