Electron Spin Resonance Spectra and the Structures of Substituted **Cyclopentadienyl Radicals**

By Philip J. BARKER, ALWYN G. DAVIES,* and JONATHAN D. FISHER

(Chemistry Department, University College London, 20 Gordon Street, London WC1H 0A])

Summary The e.s.r. spectra of substituted cyclopentadienyl radicals are in agreement with the predictions of Hückel molecular orbital theory.

THE cyclopentadienyl radicals XC₅H₄. constitute an important group of small annulene radicals, but little work has been reported on their e.s.r. spectra because no general preparative methods have been available.[†] Attention has instead been concentrated more on the next higher members of the series, the benzene radical ions, the e.s.r. spectra of which have provided an important test of M.O. theory.

We have found that the cyclopentadienyl derivatives of tin¹ and mercury² can be photolysed to yield the corresponding cyclopentadienyl radicals, which makes it possible to study for the first time the spectra of many of these species. We discuss here the e.s.r. spectra and structures of the radicals XC_5H_4 , where X = H, D, H_3C , Me_3C , and Me_3Si . The sources of the radicals, and the e.s.r. spectra which were observed, are listed in the Table.

The spectra of the substituted cyclopentadienyl radicals can be interpreted in terms of the perturbation of the ψ_{A} and ψ_8 molecular orbitals (see Figure),³ following the treatment which was first applied to the benzene radical ions.⁴ An electron-releasing substituent will not affect the energy of the antisymmetric orbital ψ_{A} which has a node at C¹, but it will destabilise ψ_{s} , and the radical will prefer the configuration $\psi_{A^2} \psi_{B^1}$. Conversely an electron-attracting substituent will stabilise ψ_{S} , and the radical will prefer the configuration $\psi_{s^2} \psi_{A^1}$. Some mixing between the two configurations may occur if their separation is small.

The spin density at a particular carbon centre should be proportional to the square of the coefficient of the atomic orbital at that centre, where $\psi_8 = 0.632 \phi_1 + 0.195 (\phi_2 + \phi_5)$ $-0.512 \ (\phi_3 + \phi_4)$, and $\psi_A = 0.602(\phi_2 - \phi_5) + 0.372(\phi_3 - \phi_5)$ ϕ_4).

In a C_5H_5 radical of D_{5h} symmetry the spin density, $ho_{\mathrm{c}_{\alpha}}$, on any one carbon centre is 1/5, identifying the value of Q in the McConnell equation $a(H\alpha) = Q\rho_{C\alpha}$ as (-)29.8 G, whence the values of a(H) in the substituted cyclopentadienyl radicals in the two limiting electronic configurations

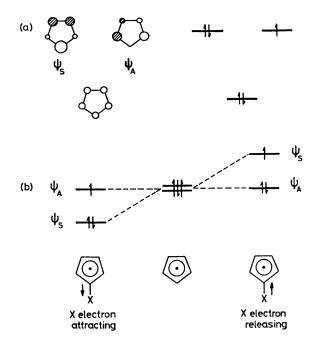


FIGURE. (a) Hückel molecular orbital diagram for the cyclopentadienyl radical. (b) Splitting of degenerate ψ_8 and ψ_A energy levels by electron-attracting and electron-releasing substituents.

are calculated to be as follows: ψ_8 : $a(H^2, H^5) = 0.195^2Q =$ 1.1 G, $a(H^3, H^4) = 0.512^2Q = 7.8$ G; and ψ_A : $a(H^2, H^5) =$ $0.602^2Q = 10.8 \text{ G}, a(\text{H}^3, \text{H}^4) = 0.372^2Q = 4.1 \text{ G}.$

The observed hyperfine couplings in the radical H_sCC₅H₄. (see Table),[‡] and their temperature independence, are in good agreement with those calculated for an electron wholly in the ψ_s orbital, confirming that the methyl group releases electrons strongly into the π -system of the ring, as it does in the benzene radical anions⁴ and cations,⁵ and, less effectively, in the cycloheptatrienyl radicals.6

TABLE. E.s.r. spectra of cyclopentadienyl radicals.

Radical C5H5. DC5H4. H3CC5H4. Me3CC3H4. Me3SiC5H4.	$\begin{array}{c} Source\\ C_5H_5SnCl_3{}^b\\ DC_5H_4SnBu_5{}^c\\ (H_3CC_5H_4)_2Hg^c\\ (Me_3CC_5H_4)_2Hg^c\\ (Me_3SiC_5H_4)_2Hg^c\end{array}$	5·97 (5H), 6·09 (4H), 0·90 (H ² , H ⁵),	0.89 (D) 7.65 (H ³ , H ⁴), 7.40 (H ³ , H ⁴),	15·30 (3H)	T/°C 98 47 73 45 57
^a For assignments, see text. ^b In ethylene. ^c In toluene. ^d Sakurai (ref. 3) $a ca. 7.70$ (2H) and 5.25 (2H) G at -60 °C.					3) reports

+ Photolysis of di-t-butyl peroxide in the presence of cyclopentadienes gives principally the radical resulting from the addition of the t-butoxyl radical to the unsaturated system. The only substituted cyclopentadienyl radicals which have been generated by this (or indeed any other) method, as far as we are aware, are the silyl-substituted cyclopentadienyls described by Sakurai (ref. 3).

 \ddagger From the expression, $a(H\beta) = \rho_{C\alpha}(A + B\cos^2\theta)$, where A = 1 G and B = 58 G, the value of $a(CH_3)$ is calculated to be ca. 12 G.

In $Me_3CC_5H_4$, the perturbing effect of the t-butyl group appears to be less. Again, this is parallel to the effect in Me₃CC₆H₅-.7

In contrast, as Sakurai has shown,³ the Me₃Si group in $Me_3SiC_5H_4$ is rather weakly electron attracting probably by interaction between the aromatic ψ_{A} orbital and the vacant Si 3d orbital. Appreciable mixing of the two configurations occurs, and, for example at -57 °C, the population distribution is ca. 30% ψ_{s} and 70% ψ_{A} . Again, the situation in Me₃SiC₆H₅⁻ is similar.⁸

It is interesting that the four hydrogen atoms in DC₅H₄. are equivalent, § and deuterium therefore, exerts no detectable perturbation on the molecular orbitals of the cyclopentadiene ring. The DC7H6. radical similarly shows no inequivalence of the hydrogen atoms,⁹ but $DC_6H_5^{-10}$ does, the unpaired electron occupying predominantly the antisymmetric antibonding orbital.

(Received, 9th April 1979; Com. 376.)

§ Added in proof: We have since been able to resolve the coupling of H^{2,5} and H^{3,4} in C₅H₄D. This work will be reported shortly.

- ¹ A. G. Davies and M.-W. Tse, J.C.S. Chem. Comm., 1978, 353.
- ² P. J. Barker and A. G. Davies, unpublished work.
- ³ M. Kira, M. Watanabe, and H. Sakurai, J. Amer. Chem. Soc., 1977, 99, 7780.

- ⁴ J. R. Bolton and A. Carrington, Mol. Phys., 1961, 4, 497.
 ⁵ R. M. Dessau, S. Shih, and E. I. Heiba, J. Amer. Chem. Soc., 1970, 92, 412.
 ⁶ F. Farr, Y. S. Rim, and N. L. Bauld, J. Amer. Chem. Soc., 1971, 93, 6888.
 ⁷ J. R. Bolton, A. Carrington, A. Forman, and L. E. Orgel, Mol. Phys., 1962, 5, 43.
- J. A. Bedford, J. R. Bolton, A. Carrington, and R. H. Prince, Trans. Faraday Soc., 1963, 59, 53.
 W. V. Volland and G. Vincow, J. Chem. Phys., 1968, 48, 5589.
 R. G. Lawler, J. R. Bolton, G. K. Fraenkel, and T. H. Brown, J. Amer. Chem. Soc., 1964, 86, 520.