Electrochemistry of Polyacetylene, (CH),: Electrochemical Doping of (CH)x Films to the Metallic State

By **PAUL** J. **NIGREY, ALAN** G. **MACDIARMID,*** and **ALAN** J. **HEEGER~**

(Department *of* Chemistry and ?Department *of* Physics, Laboratory *for* Research on the Structure *of* Matter, University of Pennsylvania, Philadelphia, Pennsylvania 19104)

Summary When silvery films **of** the semiconducting polymer, cis -'polyacetylene,' (CH)_x, are used as the anode in the electrolysis of aqueous KI solutions or methylene chloride solutions of $[\bar{B}u^n_{\overline{A}}N]^+$ [ClO₄]⁻, films of $(\mathrm{CHI}_y)_x$ and $[CH(CIO₄)_y]_x$, respectively, are obtained which, for the compositions $\text{[CHI}_{0.07}]_{x}$ and $\text{[CH(CIO_{4})}_{0.0845}]_{x}$ have high conductivities characteristic of the metallic state.

THE semiconducting polymer 'polyacetylene,' $(CH)_{x}$, can be doped by various vapours or solutions to yield at first either p - or *n*-type semiconductors and ultimately films exhibiting the electronic properties of metals. $1-3$ We report here the first electrochemical studies of $(CH)_{\alpha}$ films. The results indicate a new, simple, general method for doping $(CH)_x$ with a wide range of chemical species.

It was found that when a 1 cm \times 3 cm \times 0.01 cm strip of (CH) _x film (ca. 82% cis-isomer) was used as the anode in the electrolysis of aqueous *0.5* **M** KI solution with a potential of **9** V it was doped during ca. *0.5* h to the metallic state, to give, by elemental analysis, $\text{(CHI}_{0.07})_{x}$. The current increased from 1 to 43 mA during this time. It is important to note that the flexible, golden-silvery films contained no

oxygen (total C, H, and I content 99.8%) and hence had undergone no hydrolysis and/or oxidation during the electrolytic doping process. The room temperature conductivity of the initial film was *ca*. $1 \times 10^{-8} \Omega^{-1}$ cm⁻¹ and that of the doped film was $9.7 \Omega^{-1}$ cm⁻¹. This value is consistent with that previously observed for $(CH)_x$ films doped with iodine to the same extent3 by exposure **of** the $(CH)_{x}$ films to iodine vapour. Under the conditions employed, the film was not doped to as high levels, *ca.* $[CHI_{0.2}]_x$, as attained through vapour phase doping. It was shown in a separate experiment, using appropriate amounts of $\text{[CHI}_{0.19}]$ _x and 0.5 **M KI** solutions, that part of the iodine was removed from the film to give material of composition $\text{[CHI}_{0.11}]_{x}$. The doped film apparently enters into equilibrium with the **KI** solution according to equation **(1).**

$$
[CHI0.19]x + 0.04KI \rightleftharpoons [CHI0.11]x + 0.04KI3 (1)
$$

When the $(CH)_x$ was used as the anode in the electrolysis of 0.5 M $[Bu^n_4N]^+$ [ClO₄]⁻ in CH₂Cl₂ at 9 V, doping occurred during *ca.* **1** h to give flexible films which, by elemental analysis, had the composition $[CH(CIO_4)_{0.0645}]_{x}$. The current increased from **0.95** to 3.4mA during this time. The resulting room temperature conductivity (four-probe technique) was $970 \Omega^{-1}$ cm⁻¹. Lower doping levels obtained during shorter electrolysis times gave material having conductivities in the semiconductor region. Raman studies show that the iodinated⁴ and brominated² films should be formulated as $[(CH)^{+\psi}(X_3)_{\psi}^-]_x$ where $X = Br$ or I. By analogy, we believe that $\text{[CH(CIO_4)_{0.0545}}]$ _{*a*} is probably the ionic polycarbonium perchlorate, $[(CH)^{+0.0645}(ClO₄)⁻_{0.0645}]$ _{*x*}. Similar results were obtained by the electrolysis of methylene chloride solutions of $[Bu^n_4N]^+[SO_3CF_3]^-$ and $[Pr^n_3-$ NH]+[AsF6]-, both *of* which gave highly conducting golden-silvery flexible films. The former is assumed to contain the SO_3CF_3 ⁻ ion and the latter the AsF₄⁻ ion, since elemental analysis of the film gave a composition corresponding to $[CH(AsF₄)_{0.077}]_x$. We believe the AsF₄- ion is

electrolysis process. Preliminary experiments indicate that when the CH). films are used as the cathode in the electrolysis of appropriate alkali metal salts in organic solvents n-type doping results. Electrochemical oxidation or reduction of the delocalized (CH) $_{x}$ π -system offers a simple general method for the electrochemical doping of $(CH)_x$ films to p - or *n*-type semiconductors or metals with the concomitant introduction of a large variety of stabilizing counter anions or cations. It would appear that many of these materials, *e.g.* [CH- $(CIO₄)_{0.0645}$ $]_x$, could not be synthesized by any obvious conventional chemical means. The composition of $(CH)_{x}$, firmed by *(C* and H), (C, H, and **I),** (C, H, and Cl), and (C, H, **As,** and F) analyses, respectively. $(CHI_{0.07})_{x}$, $[CH(CIO_{4})_{0.0645}]_{x}$, and $[CH(AsF_{4})_{0.077}]_{x}$ was con-

formed by a reaction sequence involving proton abstraction from $[Prⁿ₃NH]⁺$ by fluorine atoms from As $F₆$ ⁻ during the

We thank Mr. S. C. Gau for assistance with preliminary electrochemical experiments, Mr. Y. **W.** Park for help with the four-probe conductivity measurements, and the Office of Naval Research for support.

(Received, 2nd February **1979;** *Corn.* **096.)**

- **C. K. Chiang, M. A. Druy,** *S.* **C. Gau, A. J. Heeger, A. G. MacDiarmid, T.** W. **Park, and H. Shirakawa, J.** *Amer. Chem.* **Soc.,1978, 100**, 1013; L. R. Anderson, G. P. Pez, and S. L. Hsu, *J.C.S. Chem. Comm.*, 1978, 1066.
² T. C. Clarke, R. H. Geiss, J. F. Kwak, and G. B. Street, *J.C.S. Chem. Comm.*, 1978, 489.
-
- C. K. Chiang, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, and A. G. MacDiarmid, J. Chem. Phys., 1978, 69, 5098.
S. L. Hsu, A. J. Signorelli, C. P. Pez, and R. H. Baughman, J. Chem. Phys., 1978, 69, 106.