New Reaction of Iminium Ions: Deprotonation at the *sp*²-Hybridized Carbon Atom

By SVANTE BRANDÄNGE* and LARS LINDBLOM

(Department of Organic Chemistry, Arrhenius Laboratory, University of Stockholm, S-106 91 Stockholm, Sweden)

Summary The iminium ion (1) slowly exchanges its 5'-hydrogen for deuterium when treated with NaOD- D_2O .

STRONGLY alkaline solutions of NaOD in D_2O convert the iminium ion (1), an intermediary metabolite of nicotine, into equilibrium mixtures in which the corresponding carbinolamine greatly predominates.¹ When such a

mixture (pD_c 13.4[†]) was investigated by ¹H n.m.r. spectroscopy at 70 °C, the signal from H-5' (δ 4.70) was found to integrate for less than one hydrogen. To account for this, a protium-deuterium exchange reaction was assumed to occur via the dipole-stabilized carbanion² (amino carbene) (2) (Scheme). We here present evidence for such a reaction.

That a protium-deuterium exchange takes place at C-5' was verified in the following way. After being subjected to a strongly alkaline solution (pDc 14.1, 20-22 °C, 7 days), the iminium ion (0.025 M) was reduced with NaBD₄ and the nicotine formed was investigated by 1H n.m.r. (acidic solution in D₂O) and mass spectroscopy. In the ¹H n.m.r. spectrum, the signals from H-2', H-5' α , and H-5' β appear completely resolved³ and it was thus easily confirmed that H-2' was untouched and that in all only ca. 0.4 H occupied the two 5' positions. The mass spectral analysis consistently showed the presence of a 69:31 mixture of $[{}^{2}H_{4}]$ and [2H₃]-nicotine. Of these two compounds, only the former originates from iminium molecules which have undergone the exchange reaction at C-5'; incorporation of three deuterium atoms is trivial. The exchange reaction rate at pDc 13.8 (20-22 °C) was followed as above by mass spectroscopy and the pseudo-first order rate constant was found to be $2 \times 10^{-6} \text{ s}^{-1}$.

No incorporation of deuterium at C-1 could be demonstrated (mass spectroscopy) with certainty after treatment

The exchange reaction is much slower in CD₃ONa-CD₃OD, not only at C-5' but also at C-4'. After 4 weeks at 20—22 °C, at most a 5% exchange had occurred at C-5' and only ca. 50% exchange at C-4'. This result is probably due to a lower equilibrium concentration of iminium ion than in the experiments with NaOD-D₂O. The variation of extent of exchange at C-5' with pD_c is shown in the Figure.

pD_c-dependence of the exchange reaction. Solutions FIGURE. of (1) (0.025 M) in NaOD-D₂O were left at 20-22 °C for 7 days, then reduced with $NaBD_4$ and the nicotine formed investigated by mass spectroscopy. The underlined figures refer to the yields of nicotine.

Coupling constants ${}^{1}J_{CH} = 192.5 \pm 1$ and 216 Hz have been recorded for the methine groups at C-5' of (1) and at C-2 of 3,4-dimethylthiazolium ion,⁴ respectively. The degrees of s character, and hence relative acidities, that can be calculated by means of the Muller-Pritchard relationship⁵ are consistent with the much greater ease of exchange displayed⁴ by the latter compound and its analogues.6 Smaller coupling constants (179-188 Hz) have been noted for acyclic iminium ions.7

We thank the Swedish Tobacco Company for support and Dr. Toshiaki Nishida for carrying out the coupling constant determination.

(Received, 9th April 1979; Com. 387.)

 $\dagger pD_{c} = (pH \text{ meter reading}) + 0.40$ (P. K. Glasoe and F. A. Long, J. Phys. Chem., 1960, 64, 188). Measurements were performed using a Futura Full-range (pH 0—14) Combination Electrode (Beckman).

- ¹S. Brandänge and L. Lindblom, Acta Chem. Scand., 1979, B33, 187.
- ² P. Beak and D. B. Reitz, Chem. Rev., 1978, 78, 275.
- ³ J. F. Whidby and J. I. Seeman, J. Org. Chem., 1976, 41, 1585. ⁴ P. Haake and W. B. Miller, J. Amer. Chem. Soc., 1963, 85, 4044.
- ⁵ N. Muller and D. E. Pritchard, J. Chem. Phys., 1959, 31, 1471. ⁶ J. A. Elvidge, J. R. Jones, C. O'Brien, E. A. Evans, and H. C. Sheppard, Adv. Heterocyclic Chem., 1974, 16, 1
- ⁷ R. Merényi, Adv. Org. Chem., 1976, 9 (Pt. 1), 23 (see p. 67).