Reaction of $\left[\mathrm{M}_{3}(\mathrm{CO})_{12}\right]$ ($\mathrm{M}=\mathrm{Ru}$ or Os) with the Chalconide Elements; \boldsymbol{X}-Ray Crystal and Molecular Structure of $\left[\mathrm{Os}_{4}(\mathrm{CO})_{12} \mathrm{H}_{2} \mathrm{Se}_{2}\right.$]

By Brian F. G. Johnson, Jack Lewis,* Philip G. Lodge, and Paul R. Raithby
(University Chemical Laboratory, Lensfield Road, Cambridge CB2 IEW)
and Kim Henrick and Mary McPartlin
(Department of Chemistry, The Polytechnic of North London, Holloway, London N7 8DB)

Abstract

Summary Reaction of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{12}\right]$ with $\mathrm{X}_{n}(\mathrm{X}=\mathrm{S}$, Se , or Te) in n-octane under reflux yields $\left[\mathrm{Os}_{3}(\mathrm{CO})_{9} \mathrm{H}_{2} \mathrm{X}\right]$, $\left[\mathrm{Os}_{3}(\mathrm{CO})_{9} \mathrm{X}_{2}\right]$, and $\left[\mathrm{Os}_{4}(\mathrm{CO})_{12} \mathrm{H}_{2} \mathrm{X}_{2}\right]$, but a $\mathrm{CO} / \mathrm{H}_{2}$ pressure of 35 atm is required to prepare the ruthenium analogues $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{9} \mathrm{H}_{2} \mathrm{X}\right]$ and $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{9} \mathrm{X}_{2}\right.$]; an X-ray analysis of $\left[\mathrm{Os}_{4}(\mathrm{CO})_{12} \mathrm{H}_{2} \mathrm{Se}_{2}\right.$] shows that it has a novel trigonal prismatic $\mathrm{Os}_{4} \mathrm{Se}_{2}$ core.

Although an extensive chemistry of sulphur, selenium, and tellurium derivatives of the iron carbonyls has been de-
veloped, ${ }^{1}$ relatively little is known of the chemistry of the ruthenium and osmium analogues. In this communication we report the synthesis of a series of compounds of general formulae $\left[\mathrm{M}_{3}(\mathrm{CO})_{9} \mathrm{H}_{2} \mathrm{X}\right]$ ($\mathrm{M}=\mathrm{Ru}$ or Os; $\mathrm{X}=\mathrm{S}$, Se , or Te), $\left[\mathrm{M}_{3}(\mathrm{CO})_{9} \mathrm{X}_{2}\right]$ ($\mathrm{M}=\mathrm{Ru}$ or Os; $\mathrm{X}=\mathrm{S}, \mathrm{Se}$, or Te), and $\left[\mathrm{Os}_{4}(\mathrm{CO})_{12} \mathrm{H}_{2} \mathrm{X}_{2}\right](\mathrm{X}=\mathrm{S}$ or Se$)$.

Dodecacarbonyltriosmium was treated with $\mathrm{X}_{n}(\mathrm{X}=\mathrm{S}$, Se , or Te) in n-octane under reflux for 15 h . After separation on silica (t.l.c.) three products were identified on the basis of their analytical and spectroscopic data (Table) as

Table. Spectroscopic data for $\left[\mathrm{M}_{3}(\mathrm{CO})_{9} \mathrm{X}_{2}\right],\left[\mathrm{M}_{8}(\mathrm{CO})_{9} \mathrm{H}_{2} \mathrm{X}\right]$, and $\left[\mathrm{Os}_{4}(\mathrm{CO})_{12} \mathrm{H}_{2} \mathrm{X}_{2}\right]$.

Compound	$\mathrm{v}_{\mathrm{co}} / \mathrm{cm}^{-1}$	$\tau^{\text {a }}$ /p.p.m.	$m / e^{\text {b }}$
$\left[\mathrm{Ru}_{3}(\mathrm{CO})_{9} \mathrm{~S}_{2}\right]$	2078, 2057, 2024, 2016		8
$\left[\mathrm{Ru}_{3}(\mathrm{CO})_{8} \mathrm{Se}_{2}\right]$	2076, 2053, 2019, 2010		728
$\left[\mathrm{Os}_{8}(\mathrm{CO})_{9} \mathrm{~S}_{2}{ }^{2}\right]$	2078s, 2058s, 2016s, 2010m		892
$\left[\mathrm{Os}_{3}(\mathrm{CO})_{9} \mathrm{Se}_{2}\right]$	2075s, 2054s, 2012s, 2008sh		992
$\left[\mathrm{Os}_{3}(\mathrm{CO}){ }_{9} \mathrm{Te}_{2}\right]$	2067s, 2046s, 2006s, 2002sh		1088
$\left[\mathrm{H}_{2} \mathrm{Ru}_{3}(\mathrm{CO})_{8} \mathrm{~S}\right]$	2118m, 2084s, 2060vs, 2046s, 2016s, 2008s, 1996m, 1991w	28.93	598
$\left[\mathrm{H}_{2} \mathrm{Ru}_{3}(\mathrm{CO})_{9} \mathrm{Se}\right]$	$2115 \mathrm{~m}, 2082 \mathrm{~s}, 2058 \mathrm{~s}, 2045 \mathrm{~s}, 2015 \mathrm{~s}, 2007 \mathrm{~s}, 1995 \mathrm{~m}, 1989 \mathrm{w}$	30.00	648
$\left[\mathrm{H}_{2} \mathrm{Ru}_{3}(\mathrm{CO})_{9} \mathrm{Te}\right]$	$2111 \mathrm{~m}, 2078 \mathrm{~s}$, 2054vs, $2043 \mathrm{~s}, 2012 \mathrm{~s}, 2006 \mathrm{~s}, 1993 \mathrm{~m}, 1987 \mathrm{w}$	-	696
$\left[\mathrm{H}_{2} \mathrm{OS}_{4}(\mathrm{CO})_{12} \mathrm{~S}_{2}\right]$	$2115 \mathrm{w}, 2095 \mathrm{~s}, 2078 \mathrm{~s}, 2051 \mathrm{~s}, 2034 \mathrm{~m}, 2022 \mathrm{~s}, 2018 \mathrm{~m}, 2006 \mathrm{~m}$, 1993w, 1983w, 1978w	24.25	1170
$\left[\mathrm{H}_{2} \mathrm{Os}_{4}(\mathrm{CO})_{12} \mathrm{Se}_{2}\right]$	$2111 \mathrm{w}, 2091 \mathrm{~s}, 2076 \mathrm{~s}, 2049 \mathrm{~s}, 2031 \mathrm{~m}, 2019 \mathrm{~s}, 2017 \mathrm{sh}, 2004 \mathrm{~m}$, 1990w, 1981w, 1975m	24.92	1270

$\left[\mathrm{Os}_{3}(\mathrm{CO})_{9} \mathrm{H}_{2} \mathrm{X}\right],\left[\mathrm{Os}_{3}(\mathrm{CO})_{9} \mathrm{X}_{2}\right]$, and $\left[\mathrm{Os}_{4}(\mathrm{CO})_{12} \mathrm{H}_{2} \mathrm{X}_{2}\right]$. Under similar conditions no reaction of X_{2} with $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{12}\right]$ was observed. Improved yields of the osmium derivatives were obtained from the reaction of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{12}\right]$ with X_{2} under a pressure of $\mathrm{CO} / \mathrm{H}_{2}(35 \mathrm{~atm} ; 1: 1)$. Under similar conditions the two ruthenium analogues $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{9} \mathrm{H}_{2} \mathrm{X}\right]$ and $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{9} \mathrm{X}_{2}\right.$] were also prepared. Under CO pressure, but in the absence of H_{2}, the yields of the hydrido-species $\left[\mathrm{M}_{3}(\mathrm{CO})_{8} \mathrm{H}_{2} \mathrm{X}\right]$ and $\left[\mathrm{Os}_{4}(\mathrm{CO})_{12} \mathrm{H}_{2} \mathrm{X}_{2}\right]$ decreased significantly. The molecular structure of $\left[\mathrm{Os}_{4}(\mathrm{CO})_{12} \mathrm{H}_{2} \mathrm{Se}_{2}\right]$ was established by X-ray diffraction. Yellow platelets were obtained by recrystallisation from hexane.

Crystal data: $\mathrm{C}_{12} \mathrm{H}_{2} \mathrm{O}_{12} \mathrm{Os}_{4} \mathrm{Se}_{2}, \quad M=1400 \cdot 86$, triclinic, $a=10 \cdot 004(3), b=12.764(5), c=9.711(3) \AA, \alpha=98 \cdot 14(2)$, $\beta=113.36(2), \gamma=100.73(2)^{\circ}, U=1086.1 \AA^{3}, Z=2, D_{\mathrm{c}}$ $=4.28 \mathrm{~g} \mathrm{~cm}^{-3} ; \mu\left(\mathrm{Mo}-K_{\alpha}\right)=267.0 \mathrm{~cm}^{-1}$, space group $P \overline{1}$. 5557 intensities $\left(2 \theta_{\max }=60 \cdot 0^{\circ}\right)$ were recorded on a Philips PW1100 four-circle diffractometer using graphite-monochromated Mo- K_{α} radiation. The data were corrected for absorption and Lorentz polarisation factors, and averaged to give 3286 unique observed intensities $[F>4 \sigma(F)]$. The Os and Se atoms were located by multisolution Σ_{2} sign expansion, and the C and O atoms from a subsequent electron density difference synthesis. The structure was refined by blocked cascade least-squares (Os and Se anisotropic, C and O isotropic). A weighting scheme of the form $w=\left[\sigma^{2}(F)+0.001 F^{2}\right]^{-1}$ was employed. The final residuals were $R=0.035$ and $R=\left[\Sigma w^{\frac{1}{2}} \Delta / \Sigma w^{\frac{1}{2}}\left|F_{0}\right|\right]=$ $0 \cdot 034 . \dagger$

The molecular geometry is shown in the Figure which includes some important bond parameters. The four Os and two Se atoms define a distorted trigonal prism. Each Se atom caps a triangular arrangement of Os atoms; two Os-Os distances in each ' $\mathrm{Os}_{3} \mathrm{Se}^{\prime}$ ' unit are ca. $4 \AA$ and hence non-bonding. Three terminal carbonyl ligands are bonded to each Os atom. The two hydride ligands probably edge bridge the two long Os-Os bonds [Os(1)-Os(4) and Os(2)Os(3)] since the carbonyl ligands bend away from these edges. The cis Os-Os-C angles for the two bonds have an average value of $117 \cdot 4^{\circ}$ compared to $86 \cdot 3^{\circ}$ for the $\mathrm{Os}(1)-$ Os(2) bond.

If the two Se atoms act as 4 -electron donors the molecule is a 66 -electron system with 3 more electron pairs than

Figure. The molecular geometry of $\left[\mathrm{Os}_{4}(\mathrm{CO})_{12} \mathrm{H}_{2} \mathrm{Se}_{2}\right]$, including the atom numbering scheme. Bond lengths: $\mathrm{Os}(1)-\mathrm{Os}(2)$, $2 \cdot 884(1) ; \mathrm{Os}(1)-\mathrm{Os}(4), 2 \cdot 965(1) ; \mathrm{Os}(2)-\mathrm{Os}(3), 2 \cdot 966(1) ; \mathrm{Os}(1)-$ $\mathrm{Se}(1), 2.543(1) ; \mathrm{Os}(3)-\mathrm{Se}(1), 2.571(1)$; $\mathrm{Os}(4)-\mathrm{Se}(1), 2.537(1)$; $\mathrm{Os}(2)-\mathrm{Se}(2), 2 \cdot 538(1) ; \mathrm{Os}(3)-\mathrm{Se}(2), 2 \cdot 546(1)$; and $\mathrm{Os}(4)-\mathrm{Se}(2)$, $2 \cdot 576(1) \AA$; bond angles: $\mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{Os}(4), 86 \cdot 1(1)$ and $\mathrm{Os}(1)-$ $\mathrm{Os}(2)-\mathrm{Os}(3), 85 \cdot 7(1)^{\circ}$.
required for the 'electron precise' tetrahedral configuration (cf. $\left[\mathrm{Os}_{4}(\mathrm{CO})_{12} \mathrm{H}_{4}\right]$). The addition of 3 electron pairs causes the breaking of three tetrahedral edges to give the observed cluster geometry.

Trinuclear clusters of iron, ruthenium, and osmium with capping sulphur atoms are known, ${ }^{2}$ and selenium has been found to act as a μ_{3}-ligand in the clusters $\left[\mathrm{FeCo}_{2}(\mathrm{CO})_{9} \mathrm{Se}\right]$ and $\left[\mathrm{Co}_{3}(\mathrm{CO})_{9} \mathrm{Se}\right]^{3}$ This is the first structural example of a tetranuclear osmium cluster with two capping chalconide ligands. The structure most closely resembles that of $\left[\mathrm{Fe}_{3}(\mathrm{CO})_{9}\left(\mathrm{Bu}^{\mathrm{t}} \mathrm{NS}\right) \mathrm{S}^{4}\right.$ in which one $\mathrm{M}(\mathrm{CO})_{3}$ unit in the Os cluster has been replaced by the ' $B u^{t} N$ ' fragment of the η^{4}-($\left.\mathrm{Bu}^{\mathrm{t}} \mathrm{NS}\right)$ ligand, and the hydrides removed. The structures of the $\left[\mathrm{M}(\mathrm{CO})_{9} \mathrm{X}_{2}\right]$ compounds are analogous to that of $\left[\mathrm{Fe}_{3}(\mathrm{CO})_{9} \mathrm{~S}_{2}\right]$, and those in the $\left[\mathrm{M}_{3}(\mathrm{CO})_{9} \mathrm{H}_{2} \mathrm{X}\right]$ series to $\left[\mathrm{Os}_{3}(\mathrm{CO})_{9} \mathrm{H}_{2} \mathrm{~S}\right] .{ }^{2}$

We thank the S.R.C. for financial support and Johnson Matthey and Co. Ltd. for the loan of OsO_{4}.
(Received, 23rd May 1979; Com. 548.)
\dagger The atomic co-ordinates for this work are available on request from Prof. Dr. G. Bergerhoff, Institut für Anorganische Chemie, Universität, Gerhard-Domagk-str. 1, D-5300 Bonn 1, West Germany. Any request should be accompanied by the full literature citation for this communication.
${ }^{1}$ W. Hieber and J. Gruber, Z. anorg. Chem., 1958, 296, 91.
${ }^{2}$ C. H. Wei and L. F. Dahl, Inorg. Chem., 1965, 4, 493; B. F. G. Johnson, J. Lewis, D. Pippard, P. R. Raithby, G. M. Sheldrick, and K. D. Rouse, J.C.S. Dalton, 1979, 616.
${ }^{3}$ C. E. Strouse and L. F. Dahl, J. Amer. Chem. Soc., 1971, 93, 6032.
${ }^{4}$ R. Meij, J. van der Helm, D. J. Stufkens, and K. Vrieze, J.C.S. Chem. Comm., 1978, 506.

