The Effect of ¹⁷O and the Magnitude of the ¹⁸O-Isotope Shift in ³¹P Nuclear Magnetic Resonance Spectroscopy

By Gordon Lowe,* Barry V. L. Potter, and Brian S. Sproat

(The Dyson Perrins Laboratory, Oxford University, South Parks Road, Oxford OX1 3QY)

and WILLIAM E. HULL

(Bruker-Physik AG, D-7512 Rheinstetten-Fo, Am Silberstreifen, Karlsruhe, West Germany)

Summary The effect of ¹⁷O directly bonded to ³¹P causes marked line broadening of the ³¹P resonance, but the coupling constant can be detected in favourable systems; the magnitude of the isotope shift caused by ¹⁸O directly bonded to ³¹P depends on the nature of the phosphorus to oxygen bond.

ALTHOUGH the coupling constant ${}^{1}J({}^{17}O{}^{31}P)$, has been measured for several phosphorus derivatives by ${}^{17}O$ n.m.r. spectroscopy,¹ there appears to be no report of it being determined by ${}^{81}P$ n.m.r. spectroscopy, presumably due to the quadrupolar line broadening caused by ${}^{17}O$ on the ${}^{31}P$ resonance. In order to substantiate this assumption, phosphorus oxychloride containing 2 atom % ${}^{16}O$, 44 atom % ${}^{17}O$, and 54 atom % ${}^{18}O,{}^{2}$ was converted into isotopically labelled trimethyl phosphate with methanol. The ${}^{31}P$ n.m.r. spectrum at 36.43 MHz consisted of a sharp line

 $(\Delta v_{k} 0.4 \text{ Hz})$ due to trimethyl [¹⁸O]phosphate (and presumably the unresolved trimethyl [16O]phosphate) together with six very broad (Δv_{k} 90 Hz) but equally spaced lines due to trimethyl [¹⁷O]phosphate, three to the low field and three to the high field side of the single sharp resonance. This is in accord with expectation since ¹⁷O has a nuclear spin quantum number of 5/2; the observed coupling constant $^{1}J(^{17}O^{31}P)$ 156 Hz is in reasonable agreement with the value of 165 Hz determined by ¹⁷O n.m.r. spectroscopy.¹ Although it is possible therefore to determine ${}^{1}J({}^{17}\text{O}{}^{31}\text{P})$ by ${}^{31}\text{P}$ n.m.r. spectroscopy in favourable cases, we expect ¹⁷O in ⁸¹P n.m.r. spectroscopy will find its most valuable application in quadrupolar line broadening when directly bonded to phosphorus, since the residual ³¹P(¹⁶O) or ³¹P(¹⁸O) signals will be at the minimum between two lines of the ^{\$1}P(¹⁷O) spectrum, allowing integration of the ${}^{31}P({}^{16}O)$ and ${}^{81}P({}^{18}O)$ signals and hence the ¹⁷O content to be estimated from the loss of signal otherwise expected.[†]

† Added in proof: Just such an application has been reported recently: M.-D. Tsai, Biochemistry, 1979, 18, 1468.

The recent demonstration that an isotope shift in ³¹P n.m.r. spectroscopy is observed when ¹⁸O is directly bonded to phosphorus,³ has already found extensive application.³⁻⁵ In using this technique to determine the absolute configuration at P_{α} of the diastereoisomers of adenosine 5'-(1-thiotriphosphate), the isotope shift on both P_{α} and P_{β} caused by ¹⁸O in the P_{α} -O-P_{β} bridge in (1) was 0.6 Hz, whereas the isotope shift on P_{α} caused by the non-bridging ¹⁸O in (2) was 1.1 Hz at 36.43 MHz.⁶ Since the effect of sulphur on the electronic distribution in thiophosphates is uncertain, the magnitude of the isotope shift has been investigated in simple phosphate esters.

Trimethyl [¹⁸O]phosphate was made from phosphorus [¹⁸O]oxychloride and methanol; partial hydrolysis of the triester gave dimethyl [¹⁸O]phosphate and methyl [¹⁸O]- phosphate. The isotope enrichment in each ester was ca. 50 atom %, so that two peaks of approximately equal intensity were observed in the ³¹P n.m.r. spectrum of each ester. In order to observe the isotope shift in a phosphorus-oxygen single bond, adenosine $5'[\alpha\beta^{-18}O, \beta^{-18}O_2]$ triphosphate (3, fully enriched at the sites indicated) was incubated with pyruvate kinase for a period known to cause partial randomisation of label.⁵ The recovered ATP contained therefore a mixture of (3) and (4) enabling the isotope shift on P_Y of ¹⁸O in the P_B-O-P_Y bridge to be measured.

TABLE. ¹⁸O Isotope shifts (Hz) in phosphate esters.

At 36.43 MHz	At 162 MHz
1.27	5.83
1.07	4.74
0.88	3.72
0.74	3.38
	At 36·43 MHz 1·27 1·07 0·88 0·74

The isotope shifts were measured at both 36.43 and 162 MHz; the data are shown in the Table. A plot of the isotope shift against the square of the frequency of the A_1 stretching mode of the phosphates,⁷ shows a good linear relationship with a correlation coefficient of 0.985, indicating that the magnitude of the isotope shift is related to the force constant of the phosphorus-oxygen bond.

FIGURE. The ³¹P n.m.r. spectrum (at 162 MHz) of (a) P_β and (b) P_γ of a mixture of (3) and (4) derived by partial isotopic scrambling of (3) by pyruvate kinase.

The ³¹P n.m.r. spectrum of the P_{β} and P_{γ} resonances of the mixture of (3) and (4) is shown in the Figure. It is clear from this that not only are the P_{γ} resonances clearly resolved at 162 MHz, but the P_{β} resonances are also partially resolved, the effect being due to (3) possessing one bridging and two non-bridging ¹⁸O at P_{β} , whereas (4) possesses two bridging and one non-bridging ¹⁸O at P_{β} . Since the isotope shift is always to higher field, the high field triplet is assigned to P_{β} of (3) and the low field triplet

J.C.S. CHEM. COMM., 1979

is assigned to P_{β} of (4). It seems clear that the magnitude of the isotope shift is a parameter which will enhance the range of applications of this technique.

(to B. V. L. P.) and a research grant. This is a contribution from the Oxford Enzyme Group supported by the S.R.C.

The authors thank the S.R.C. for a research studentship

(Received, 15th May 1979; Com. 518.)

¹ H. A. Christ, P. Diehl, H.-R. Schneider, and H. Dahn, Helv. Chim. Acta, 1961, 44, 865; H. A. Christ and P. Diehl, Helv. Phys. Acta, 1963, 36, 170; G. Grossmann, M. Gruner, and G. Seifert, Z. Chem., 1976, 16, 362; G. A. Gray and T. A. Albright, J. Amer. Chem. Soc., 1977, 99, 3243, H. C. E. McFarlane and W. McFarlane, J.C.S. Chem. Comm., 1978, 531.
² P. M. Cullis and G. Lowe, J.C.S. Chem. Comm., 1978, 512.
³ M. Cohn and A. Hu, Proc. Nat. Acad. Sci. U.S.A. 1978, 75, 200; G. Lowe and B. S. Sproat, J.C.S. Chem. Comm., 1978, 565.
⁴ M. R. Webb, G. G. McDonald, and D. R. Trentham, J. Biol. Chem., 1978, 253, 2908; J. L. Bock and M. Cohn, *ibid.*, p. 4082;
⁹ L. une Ettin and J. W. Bicker, *ibid.* 6, 4784; E. Lorde, J.A. Detrick, end S. Selmene, L. Bock and M. Cohn, *ibid.*, p. 4082;

R. L. van Etten and J. M. Risley, *ibid.*, p. 4784; F. Jordan, J. A. Patrick, and S. Salamone, Jr., *ibid.*, 1979, 254, 2384. ⁵ G. Lowe and B. S. Sproat, J.C.S. Chem. Comm., 1978, 783; J.C.S. Perkin I, 1978, 1622.

⁶ R. L. Jarvest and G. Lowe, J.C.S. Chem. Comm., 1979, 364; a similar observation has been made by Dr. M. Cohn, personal communication.

⁷ J. Kumamoto, Spectrochim. Acta, 1965, 21, 345.