Infrared Spectroscopic Evidence for Photochemical Generation of the Metallocenes $[(\eta - C_5H_5)_2M]$ (M = Mo or W) in Low-temperature Matrices

By PETER GREBENIK, ANTHONY J. DOWNS,* MALCOLM L. H. GREEN, and ROBIN N. PERUTZ* (Department of Inorganic Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR)

Summary U.v. photolysis of $[(\eta-C_5H_5)_2WH_2]$, $[(\eta-C_5H_5)_2WD_2]$, $[(\eta-C_5H_5)_2WCO]$, or $[(\eta-C_5H_5)_2W(CH_3)H]$ in an argon matrix at 10 K leads to a common product, identified by i.r. spectroscopy as $[(\eta-C_5H_5)_2W]$, and similarly photolysis of $[(\eta-C_5H_5)_2MOH_2]$ or $[(\eta-C_5H_5)_2MOCO]$ affords $[(\eta-C_5H_5)_2MO]$; trapping experiments with a CO

matrix show that the elimination of H_2 from $[(\eta$ -C₅ $H_5)_2$ -MH₂] (M = Mo or W) is close to concerted.

PHOTOLYSIS of $[(\eta-C_5H_5)_2WH_2]$ in solution in the presence of certain hydrocarbons leads to insertion of the tungsten atom into C-H bonds. Striking examples include insertion into both sp^2 (e.g., benzene) and sp^3 C–H bonds (e.g., tetramethylsilane).¹ The key intermediate proposed for these reactions is tungstenocene, $[(\eta-C_5H_5)_2W]$, although alternative mechanisms have also been considered.² The arguments in favour of concerted elimination of H₂ to form a metallocene have been reinforced by recent experiments in which $[(\eta-C_5H_5)_2MOH_2]$ was photolysed in the presence of $[^2H_8]$ toluene.³ In this communication we report the direct detection of $[(\eta-C_5H_5)_2W]$ and $[(\eta-C_5H_5)_2MO]$ in matrix-isolation experiments. (i) Absorption bands with the same wavenumbers and relative intensities are observed on photolysis of each of $[(\eta-C_5H_5)_2WH_2]$, $[(\eta-C_5H_5)_2WD_2]$, $[(\eta-C_5H_5)_2WCO]$, and $[(\eta-C_5H_5)_2W(CH_3)H]$; with the methyl hydride methane is also detected. Similarly, a common product emerges on photolysis of $[(\eta-C_5H_5)_2MOH_2]$ and $[(\eta-C_5H_5)_2MOCO]$.

(ii) The product spectra at wavenumbers $< 3200 \text{ cm}^{-1}$ are strikingly similar to those of known metallocenes with parallel rings,⁴ as is shown by the matrix spectrum of $[(\eta-C_5H_5)_2V]$ and $[(\eta-C_5H_5)_2Cr]$ [Figure (b) and Table]. The

FIGURE. (a) I.r. spectrum of $[(\eta-C_5H_5)_2WCO]$ in Ar at 10³K (3.5 h evaporation at 315 K). (b) Spectrum after 40 min u.v. photolysis with a Hanovia high-pressure Hg arc. Full line shows product; broken line shows starting material. The arrows on the baseline indicate the wavenumbers of $[(\eta-C_3H_5)_2V]$ in Ar at 10 K.

The Figure shows the i.r. spectrum of $[(\eta-C_5H_5)_2WCO]$ in an argon matrix at 10 K before (a) and after (b) broad-band u.v. photolysis. An i.r. absorption characteristic of free CO (at 2137 cm⁻¹) develops with photolysis at the expense of the absorptions of the starting material. Simultaneously several new bands develop, including an intense feature at 3238 cm⁻¹ (see Table), the growth patterns of which indicate a common origin. A similar spectrum is observed in experiments with the molybdenum analogue, except for the notable absence of any bands in the 3200 cm⁻¹ region. Neither selective photolysis nor annealing causes reversal of the CO elimination. On the basis of the arguments outlined below, we assign the new bands to the metallocenes $[(\eta-C_5H_5)_2M]$ (M = Mo or W). starting materials invariably have much more complex spectra.

(iii) Photolysis of $[(\eta-C_5H_5)_2WH_2]$ in a CO matrix yields the characteristic bands assigned to $[(\eta-C_5H_5)_2W]$ and a band at 1920 cm⁻¹ consistent with the formation of some $[(\eta-C_5H_5)_2WCO]$.

(iv) A similar cycle of reactions has been carried out with the vanadium analogues $[(\eta-C_5H_5)_2V]$ and $[(\eta-C_5H_5)_2VCO]$ which are both stable at room temperature⁵ and can be evaporated into matrices [equation (1)].

$$[(\eta - C_5 H_5)_2 VCO] \xrightarrow[h\nu, CO, 10 \text{ K}]{} [(\eta - C_5 H_5)_2 V] + CO \qquad (1)$$

low yield

$[(\eta - C_5 H_5)_2 W]$	$[(\eta\text{-}\mathrm{C}_{5}\mathrm{H}_{5})_{2}\mathrm{Mo}]$	$[(\eta - C_5 D_5)_2 W]^{a}$	$[(\eta\text{-}C_5H_5)_2V]$	$[(\eta\text{-}C_5H_5)_2Cr]$
3090w	3105w	52205, DI	3100 w	3110w
			1428w	1412w
1086m	1094s	1032m	1112m	1099s 1050w
980m	991sh	760m	1010s	994sh
971m	985m			986s
	970w, br		-	
778m	778s		78 3 s	785s 756s
$323 \mathrm{w}^{\mathrm{b}}$	350w		429w	439m
$264 \mathrm{w}^{\mathrm{b}}$			385w	

TABLE. I.r. bands of metallocenes in Ar matrices at 10 K (cm⁻¹).

s = strong; m = medium; w = weak; sh = shoulder; br = broad. ^a Only the most intense bands of $[(\eta - C_5 D_5)_2 W]$ were observed. ^b These bands were observed only on photolysis of $[(\eta - C_5H_5)_2WCO]$.

Most conspicuous in the i.r. spectrum of $[(\eta - C_5 H_5)_2 W]$ is

the broad, intense band at 3238 cm^{-1} (half-width 26 cm^{-1}).

Since experiments with $[(\eta - C_5 D_5)_2 WH_2]$ or $[(\eta - C_5 D_5)_2 WD_2]^{\dagger}$

show that the band maximum shifts only 13 cm^{-1} on

deuteriation, this absorption must be ascribed to an

electronic transition. The absence of any vibrational

progression suggests an intraconfigurational transition.

The most plausible assignment involves a transition between spin-orbit sub-states of a ${}^{3}E_{2}$ term ($\Omega = 2 \leftarrow \Omega = 3$) of a

parallel metallocene.⁶ (Similar transitions have been observed for $[IrCl_6]^{2-}$ and $[OsCl_6]^{2-,?}$) On this basis we

associate the broad band at 970 cm⁻¹ with the corresponding

 H_2 from $[(\eta - C_5 H_5)_2 W H_2]$: stepwise loss of two hydrogen

atoms or concerted elimination of H_2 . If hydrogen atoms are generated, it should be possible to trap them with a CO

Two mechanisms can be envisaged for the elimination of

electronic transition of $[(\eta - C_5 H_5)_2 M_0]$.

matrix to form HCO.8 However, no HCO is detected on photolysis of $[(\eta - C_5 H_5)_2 M H_2]$ (M = Mo or W) in a CO matrix. This contrasts with the ready detection of HCO in experiments performed under similar conditions with $[(\eta - C_5H_5)_2 -$ ReH]. Accordingly we conclude that elimination of H, from $[(\eta - C_5 H_5)_2 M H_2]$ is close to concerted.

 $[Bis(\eta$ -cyclopentadienyl)tungsten] and its molybdenum analogue are some of the first heavy metallocenes to be characterised outside the iron group. The generation of matrix-isolated tungstenocene represents a major step towards proving its intermediacy in the insertion reactions of $[(\eta - C_5 H_5)_2 W H_2]^{1}$

We thank Dr. G. P. Gaskill for conducting preliminary experiments and the S.R.C. for a studentship (P. G.) and for a grant towards the purchase of an i.r. spectrometer.

(Received, 4th April 1979; Com. 359.)

 $[(\eta-C_5D_5)_2WD_2]$ was synthesised by exchange of $[(\eta-C_5H_5)_2WH_2]$ with D_2 in toluene in the presence of $Mn_2(CO)_{10}$ (H. D. Kaesz and R. Hoxmeier, personal communication). The extent of deuteriation on the rings was $ca. 90^{\circ}$.

[±] The values of ζ for the neutral atoms Mo and W are 552 and 2089 cm⁻¹ respectively (J. S. Griffith, 'The Theory of Transition-metal Ions,' Cambridge University Press, 1964, p. 438).

¹ M. L. H. Green, Pure Appl. Chem., 1978, 50, 27 and references therein.

² M. L. H. Green, M. Berry, C. Couldwell, and K. Prout, Nouveau J. Chim., 1977, 1, 187.

³ G. L. Geoffroy and M. G. Bradley, *Inorg. Chem.*, 1978, **17**, 2410. ⁴ H. P. Fritz, *Adv. Organometallic Chem.*, 1964, **1**, 239; K. Nakamoto, 'Infrared and Raman Spectra of Inorganic and Coordination Compounds,' 3rd edn., Wiley-Interscience, New York, 1978, p. 388.

- ⁶ F. Calderazzo, G. Fachinetti, and C. Floriani, J. Amer. Chem. Soc., 1974, 96, 3695.
 ⁶ H. H. Brintzinger, L. L. Lohr, and K. T. Wong, J. Amer. Chem. Soc., 1975, 97, 5146.
 ⁷ G. C. Allen, R. Al-Mobarak, G. A. M. El-Sharkawy, and K. D. Warren, Inorg. Chem., 1972, 11, 787.
- ⁸ D. E. Milligan and M. E. Jacox, J. Chem. Phys., 1969, 51, 277.