
Simple Synthesis of Methyl DL-Desosaminide

By TAKAMASA KINOSHITA,* YOUICHI KAWASHIMA, KOJI HAYASHI, and TOSHIO MIWA (Faculty of Science, Osaka City University, Osaka 558, Japan)

Summary A short route to DL-desosamine from the product of the condensation of 4-nitrobutan-2-ol with sodium glyoxylate is described.

SEVERAL groups¹⁻⁴ have reported the synthesis of desosamine, 3,4,6-trideoxy-3-dimethylamino-*xylo*-hexose, which is the carbohydrate component of a number of antibiotics. We report a simple synthesis of methyl DL-desosaminide (1) from the condensation product, 2-hydroxy-3-nitro-5methyl- δ -valerolactone (2a),† of 4-nitrobutan-2-ol with sodium glyoxylate in the presence of sodium hydrogen carbonate in water at 25 °C.

Because of its poor solubility in toluene, the lactone (2a) was converted into the corresponding tetrahydropyranyl

† Two condensation products (2a), m.p. 155-156 °C, 32 % yield, and (2b), m.p. 140-140.5 °C, 10 % yield, were isolated upon repeated recrystalization from ethyl acetate. Their structures were deduced from spectroscopic evidence (¹H and ¹³C n.m.r. and i.r.).

J.C.S. CHEM. COMM., 1979

ether.[‡] This was reduced with di-isobutylaluminium hydride in toluene at -70 °C, followed by condensation with methanolic hydrogen chloride, to give the corresponding methyl glycoside, methyl 3,4,6-trideoxy-3-nitro- β -DL-lyxohexopyranoside (3a) (87.5%) and the α -anomer (3b) (12.5%)total yield 80% from (2a). Treatment of (3a) with sodium hydrogen carbonate in aqueous methanol at 50 °C gave an equilibrated mixture via retro-aldol condensation,⁵ from which methyl 3,4,6-trideoxy-3-nitro- β -DL-xylo-hexopyranoside (4) having the desired relative configuration was isolated by preparative t.l.c.§ Catalytic hydrogenation of (4) on PtO_2 in methanol followed by Eschweiler-Clarke methylation led to the oily methyl DL-desosaminide (1) which was identified by comparison of its ¹H n.m.r. spectrum with that reported.²

(Received, 10th May 1979; Com. 493.)

[‡] The tetrahydropyranyl ether of (2a) was prepared in the presence of pyridinium toluene-p-sulphonate in CH₂Cl₂; m.p. 140·5-141 °C.

§ The 1H n.m.r. spectrum of (4) was in full agreement with that reported (ref. 2). The equilibrated mixture was composed of (3a), (4), and an unknown product in a ratio of 1:2:1.

- ¹ A. C. Richardson, Proc. Chem. Soc., 1963, 131.

- ² H. H. Baer and C.-W. Chiu, Canad. J. Chem., 1974, 52, 122.
 ³ F. Korte, A. Bilow, and R. Heinz, Tetrahedron, 1962, 18, 657.
 ⁴ H. Newman, J. Org. Chem., 1964, 29, 1461.
 ⁵ J. Kovar, K. Capec, and H. H. Baer, Canad. J. Chem., 1971, 49, 3960.