Substituent Effects in the Insertion of Cyclopropylidenes into 3,4-Related C–H-Bonds

By MARK S. BAIRD

(Department of Organic Chemistry, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU)

Summary The carbenes (4, R = aryl) (or related carbenoids) undergo competitive rearrangement to allenes (2) and insertion into a C-H bond 3,4-related to the carbene centre to produce (3); the product ratio can be correlated with substituent σ -constants, leading to a ρ value of -0.50 ± 0.01 for the insertion.

THE insertion of carbenes into C-H bonds is normally facilitated by the presence of an α -oxygen, both in inter-1 and intra-molecular² processes. However, whereas (1, R = H) reacts with MeLi to give both (2, R = H) and (3, R = H) via (4) or a related carbenoid,³ (1, R = OPh) leads only to (2, R = OPh) at 25-35 °C.4[†] Furthermore the carbene (5) inserts into the C(3)-H rather than the C(2)-H bond; this has been explained in terms of an early transition state for the latter process when C-H bond nucleophilicity will dominate in controlling the reaction rate.⁵ However, the lack of insertion into the tertiary isopropyl C-H bond in (6) has been ascribed to steric crowding in a product-like transition state,⁶ and unusual substituent effects are reported for reactions of arylcyclopropylidenes.⁷

The reactivities of carbenes in intermolecular processes, and particularly in cycloadditions, have been analysed by competition experiments, leading, for example, to the dual parameter equation of Moss *et al.*⁸ We now report the use of intramolecular competition studies in analysing cyclopropylidene insertion into 3,4-related C-H bonds.

The dibromide (1, R = Ph); reacts with methyllithium in ether§ at 25—35 °C to produce a 1:2.77 mixture of (2, R = Ph) and (3, R = Ph) as the only major products.¶ The latter is characterised as the *endo*-isomer on

† In related systems addition to the aromatic ring is also observed. (L. Skattebøl, personal communication). Insertion into a 3,4related C-H bond has been reported in the reaction of substituted (2,2-dibromocyclopropyl)methanols with MeLi (N. O. Nilsen, L. K. Sydnes, and L. Skattebøl, J.C.S. Chem. Comm., 1978, 128).

[‡] Prepared by reaction of the corresponding alkene (E. B. Sokolova, M. P. Shevanova, T. T. Ta'ng, and E. A. Troyanovskaya, *Zhur. obshch. Khim.*, 1964, 34, 3085) with CHBr₃-aq. NaOH-cetrimide.

§ Prepared from Li and MeBr in Et₂O.

 \P The product ratio was determined by capillary g.l.c. on a 30 ft OV1 column, standardizing with artificially prepared mixtures of the two components.

the basis of its n.m.r. spectrum which includes a singleproton singlet at τ 9.15 for endo-H-4 and a single-proton triplet (J 3.4 Hz) at τ 6.65 for the benzylic exo-hydrogen.⁹ The dibromides (1, R = 4-MeC₆H₄, 4-ClC₆H₄, and 4- $CF_3.C_6H_4$ treact similarly to give the corresponding allenes (2) and bicyclobutanes (3) in ratios of 1: 3.25, 1: 2.03, and 1:1.46, respectively. To a first approximation, the rate of opening of the cyclopropylidene $(4, R = 4-XC_6H_4)$ to allene will not be affected by the nature of X. Changes in the (2): (3) ratio can therefore be attributed to alterations in the rate of the insertion reaction brought about by interaction of X with the benzylic C-H bonds. A Hammett plot of $\log[ratio (3)/(2)]$ against σ for the substituent¹⁰ leads to a good straight line, $ho = -0.50 \pm 0.01$; this corresponds to an insertion involving little build-up of charge at carbon in the transition state and is similar to the value obtained for insertion of : CCl₂ into XC₆H₄.SiMe₂H¹¹a but rather smaller than those for methylene insertion into Si-H bonds^{11a}

The dibromide (7, X = H), prepared by reaction of 1,1-di-isopropylethylene with CHBr₃-aq. NaOH-cetrimide, reacts with MeLi at 25-35 °C to give the bicyclobutane (8, X = H)⁶ and allene (9, X = H). Comparison of the product ratio with that for the reaction of (7, X =²H) with MeLi to produce (8, $X = {}^{2}H$) and (9, $X = {}^{2}H$) leads to an $H/^{2}H$ isotope effect of 1.7 for the insertion.** The absolute values of the ratios of (8) to (9) increase by ca. 20% when the reactions are carried out at -43 to -47 °C but the isotope effect remains constant. The value is rather larger than that for insertion into a 3,4-related CH-bond by alkylcarbenes¹² but very close to that in a related carbenoid reaction.13

(Received, 26th April 1979; Com. 434.)

** This calculation was carried out by assuming the rate of allene formation to be independent of ²H-substitution.

¹ J. C. Anderson and C. B. Reese, Chem. and Ind., 1963, 575; for other examples see W. Kirmse, 'Carbene Chemistry,' 2nd Edn., Academic Press, London, 1971.

- ² See for example M. S. Baird, Chem. Comm., 1971, 1145.
- ³ D. W. Brown, M. E. Hendrick, and M. Jones, Tetrahedron Letters, 1973, 3951.
- ⁴ M. S. Baird and D. Jackson, unpublished results.
- ⁵ L. A. Paquette, G. Žon, and R. T. Taylor, J. Org. Chem., 1974, 39, 2677.
- ⁶ D. P. G. Hamon and V. C. Trenerry, *Tetrahedron Letters*, 1974, 1371. ⁷ T. Shono, I. Nishiguchi, T. Komamura, and K. Fujita, *Tetrahedron Letters*, 1977, 4327.
- ⁸ See R. A. Moss, M. A. Joyce, and J. K. Huselton, Tetrahedron Letters, 1975, 4621.
 ⁹ W. Kirmse and H. Lechte, Annalen, 1970, 739, 231; W. R. Moore and J. B. Hill, Tetrahedron Letters, 1970, 4553; J. B. Sieja,
- J. Amer. Chem. Soc., 1971, 93, 130 and references therein.
 ¹⁰ L. P. Hammett, 'Physical Organic Chemistry,' McGraw-Hill, New York, 1970.
 ¹¹ (a) D. Seyferth, R. Damrauer, R. M. Turkel, and L. J. Todd, J. Organometallic Chem., 1969, 17, 367; J. Nishimura, J. Furukawa, and N. Kawabata, *ibid.*, 1971, 29, 237; D. Seyferth, R. Damrauer, J. Y-P. Mui, and T. F. Jula, J. Amer. Chem. Soc., 1968, 90, 2944;
 (b) D. Seyferth and Y. M. Cheng, *ibid.*, 1973, 6763.
 ¹² W. Kirmao, H. D. van Schole, and H. Arnold, Annalas, 1969, 711, 29.
- ¹² W. Kirmse, H. D. von Scholz, and H. Arnold, Annalen, 1968, 711, 22.
- ¹³ M. J. Goldstein and S. J. Baum, J. Amer. Chem. Soc., 1963, 85, 1885.