Di- μ-(Cyclopentadienyl)-bis(tri-isopropylphosphine)dipalladium(I)

By Helmut Werner* and Hans-Juergen Kraus
(Institut für Anorganische Chemie der Universität, Am Hubland, D-8700 Würzburg, W. Germany)

Summary Di- μ-(cyclopentadienyl)-bis(tri-isopropylphosphine)dipalladium(I) was prepared by the reaction of $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Pd}\left(\mathrm{MeCO}_{2}\right)\left(\mathrm{PPr}_{3}{ }_{3}\right)\right]$ with $\mathrm{NaK}_{2 \cdot 8}$; its sandwichtype structure is proved by reactions with $\mathrm{Me}_{3} \mathrm{SiCl}$, PhSH, or $\mathrm{PhCO}_{2} \mathrm{H}$ which give $\left[\left(\mu-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mu-\mathrm{X}) \mathrm{Pd}_{2}\left(\mathrm{PPr}_{3}\right)_{2}\right]$ ($\mathrm{X}=\mathrm{Cl}, \mathrm{PhS}$, or PhCO_{2}).

Binuclear sandwich-type complexes possessing an M_{2} unit co-ordinated by two $\mathrm{C}_{n} \mathrm{H}_{n}$ ring systems are very rare. Recently, we discovered a simple and straightforward route to obtain ($\mathrm{Pd}-\mathrm{Pd}$)-complexes of general composition $(\mu-\mathrm{X})(\mu-\mathrm{Y}) \mathrm{Pd}_{2} \mathrm{~L}_{2}$ in which the oxidation state of palladium is $+I$ [equation (l)]. ${ }^{1}$ The $1+1$-addition can be applied to

prepare the corresponding complexes with $\mathrm{X}=\mathrm{C}_{5} \mathrm{H}_{5}$, $\mathrm{Y}=2-\mathrm{RC}_{3} \mathrm{H}_{4} ; \mathrm{X}=\mathrm{Y}=2-\mathrm{RC}_{3} \mathrm{H}_{4} ; \mathrm{X}=2-\mathrm{RC}_{3} \mathrm{H}_{4}, \mathrm{Y}=\mathrm{Cl}$, $\mathrm{I} ; 1,2 \mathrm{X}=2-\mathrm{RC}_{3} \mathrm{H}_{4}, \mathrm{Y}=\mathrm{MeCO}_{2}, \mathrm{CF}_{3} \mathrm{CO}_{2}$, or $\mathrm{PhCO}_{2},{ }^{3}$ and $\mathrm{L}=\mathrm{PPr}^{\mathrm{i}}{ }_{3}, \mathrm{PBu}_{3}^{\mathrm{t}}$, or $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}$. There is no possibility, however, of obtaining the binuclear sandwich $\left[\left(\mu-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Pd}_{2} \mathrm{~L}_{2}\right]$ according to equation (l) since the necessary starting compound $\operatorname{Pd}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$ has as yet not been prepared. ${ }^{4}$

(1)
(2)
(3)

Scheme 1. Reagents: i, $\mathrm{TlC}_{5} \mathrm{H}_{5}, \mathrm{THF}-\mathrm{C}_{6} \mathrm{H}_{8}, 25^{\circ} \mathrm{C}, 3 \mathrm{~h}$; ii, $\mathrm{NaK}_{2 \cdot 8}, \mathrm{C}_{6} \mathrm{H}_{6}, 25^{\circ} \mathrm{C}, 5 \mathrm{~h}\left(\mathrm{~L}=\mathrm{PPr}_{3}{ }_{3}\right)$.

Therefore, we have used a different route, which is outlined in Scheme 1. The acetate-bridged complex (1) ${ }^{5}$ reacts with $\mathrm{TIC}_{5} \mathrm{H}_{5}$ to give the new mononuclear compound (2) $\left[{ }^{1} \mathrm{H}\right.$ n.m.r. $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 5 \cdot 67\left(\mathrm{~d}, 5 \mathrm{H}, J_{\mathrm{PH}} 2.0 \mathrm{~Hz}\right)$ and 2.00 ($\mathrm{s}, 3 \mathrm{H}$)] which, on treatment with sodium-potassium alloy $\mathrm{NaK}_{2} \cdot 8,{ }^{6}$ forms (3) in 55% yield. Compound (3) is also obtained by reaction of $\left[\left(\mu-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mu-\mathrm{MeCO}_{2}\right) \mathrm{Pd}_{2}\left(\mathrm{PPr}_{3}\right)_{2}\right]^{3}$
with excess of $\mathrm{TlC}_{5} \mathrm{H}_{5}$ in benzene. The structure of (3) $[m / e$ (field desorption) 663.5 ; calc. 663.5] is confirmed by its ${ }^{1} \mathrm{H}$ n.m.r. spectrum which shows a $1: 2: 1$ triplet $\left[\delta\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)\right.$ $5 \cdot 70, J_{\mathrm{PH}} 2 \cdot 2 \mathrm{~Hz}$] for the cyclopentadienyl protons and excludes the formation of the isomer $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{L}) \mathrm{Pd}-\mathrm{Pd}(\mathrm{L})-\right.$ $\left.\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\right] . \dagger$

(5)

Scheme 2. Reagents: i, $\mathrm{Me}_{3} \mathrm{SiCl}\left(\mathrm{l}: 1\right.$), $\mathrm{C}_{6} \mathrm{H}_{6}, 25^{\circ} \mathrm{C}$; ii, PhSH (1:1), $\mathrm{C}_{6} \mathrm{H}_{8}, 25^{\circ} \mathrm{C}, 30 \mathrm{~min}$; iii, $\mathrm{PhCO}_{2} \mathrm{H}^{(1: 1)}, \mathrm{C}_{8} \mathrm{H}_{6}, 25{ }^{\circ} \mathrm{C}$ ($\mathrm{L}=\operatorname{PPr}_{3}{ }^{1}$).

There is also strong support for the sandwich-type structure of (3) by its reactions with $\mathrm{Me}_{3} \mathrm{SiCl}, \mathrm{PhSH}$, or $\mathrm{PhCO}_{2} \mathrm{H}$ (Scheme 2). Compound (4) had originally been prepared by reduction of $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Pd}(\mathrm{L}) \mathrm{Cl}$ with Mg or LiAlH$\left(\mathrm{Bu}^{\mathrm{t}} \mathrm{O}\right)_{3}$ in THF whereas (5) had been obtained by a metathetical reaction of $\left[\left(\mu-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mu-\mathrm{Br}) \mathrm{Pd}_{2} \mathrm{~L}_{2}\right]$ and TlSPh in benzene. ${ }^{7}$ The hitherto unknown complex (6) [${ }^{1} \mathrm{H}$ n.m.r. $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 5 \cdot 15\left(\mathrm{t}, J_{\mathrm{PH}} 2.5 \mathrm{~Hz}, 5 \mathrm{H}\right), \mathrm{l} \cdot 22(\mathrm{~d} \times \mathrm{vt} 36 \mathrm{H})$, ${ }_{\ddagger}^{+}$ $8 \cdot 26\left(\mathrm{~m}, 2 \mathrm{H}\right.$ of $\left.\mathrm{PhCO}_{2}\right)$, and $7 \cdot 14\left(\mathrm{~m}, 3 \mathrm{H}\right.$ of $\left.\left.\mathrm{PhCO}_{2}\right)\right]$ is an analogue of the above mentioned compound $\left[\left(\mu-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mu-\right.$ $\left.\left.\mathrm{MeCO}_{2}\right) \mathrm{Pd}_{2} \mathrm{~L}_{2}\right]$ which is formed by the reaction of $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\right.$ $\left.\mathrm{Pd}\left(\mathrm{MeCO}_{2}\right)\left(\mathrm{C}_{6} \mathrm{H}_{8}\right)\right]$ and $\mathrm{PdL}_{2} .{ }^{3}$

In contrast to $\left[\left(\mu-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mu-2-\mathrm{Bu}^{\mathrm{t}} \mathrm{C}_{3} \mathrm{H}_{4}\right) \mathrm{Pd}_{2} \mathrm{~L}_{2}\right],{ }^{2}$ complex (3) does not dissociate in solution to give $\operatorname{Pd}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$ and PdL_{2} indicating that co-ordination of two bridging cyclopentadienyl ligands to the $\mathrm{Pd}_{2} \mathrm{~L}_{2}$ unit stabilises the binuclear sandwich-type structure.

This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie. We thank the BASF and DEGUSSA companies for generous gifts of chemicals.
\dagger See, e.g., the complex $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{L}) \operatorname{Pd}-\mathrm{Pd}(\mathrm{L})\left(2-\mathrm{ClC}_{3} \mathrm{H}_{4}\right)\right]$ which shows a doublet for the cyclopentadienyl protons (ref. 2).
\ddagger Doublet of virtual triplets, $N={ }^{3} J_{\mathrm{PH}}+{ }^{6} J_{\mathrm{PH}}=c a .13 \cdot 4,{ }^{3} J^{\prime}{ }_{\mathbf{H H}}=6.7 \mathrm{~Hz}$.
${ }^{1}$ H. Werner and A. Kühn, Angew. Chem., 1977, 89, 427; Angew. Chem., Internat. Edn., 1977, 16, 412.
${ }^{2}$ H. Werner and A. Kühn, J. Organometallic Chem., in the press.
${ }^{3}$ H. Werner and H. J. Kraus, Chem. Ber., in the press.
${ }^{4}$ P. M. Maitlis, 'The Organic Chemistry of Palladium,' Academic Press, New York and London, 1971, Vol. I, p. 254.
${ }^{5}$ J. Powell and T. Jack, Inorg. Chem., 1972, 11, 1039.
${ }^{6}$ J. H. Ellis and E. A. Flom, J. Organometallic Chem., 1975, 99, 263.
${ }^{7}$ H. Felkin and G. K. Turner, J. Organometallic Chem., 1977, 129, 429.

