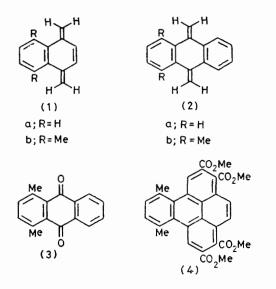
Two Relatively Stable *p*-Quinodimethanes

By MICHAEL LANCASTER and DAVID J. H. SMITH* (Department of Chemistry, University of Leicester, Leicester LE1 7RH)

Summary Thermally stable p-quinodimethanes (1b) and (2b) have been prepared which owe their relative stability to the presence of the methyl groups in the 5,8- [for (1b)] and 1,4-positions [for (2b)].


THE existence of 1,4-naphthoquinodimethane (1a) and 9,10-anthraquinodimethane (2a) as reactive intermediates in some reactions is well established.¹ The high reactivity of these molecules and their tendency to polymerise at ambient temperatures has made attempts to isolate and

characterise them difficult. However, Pearson and his co-workers² have succeeded in measuring their spectroscopic properties at low temperatures.

We have now prepared two related compounds which are relatively stable thermally. Treatment of the anthraquinone $(3)^3$ with an excess of methylmagnesium iodide followed by zinc(II) acetate and chloroacetic acid gave (2b) (43%) and not the reported product.⁴

Compound (2b),† m.p. 100—101 °C, is thermally stable up to its melting point and its ¹H n.m.r. spectrum [τ (CD-Cl₃) 2·40—2·57 (2H, m), 2·67—2·83 (2H, m), 2·93 (2H, s),

[†] All new compounds gave the expected mass spectra and elemental analyses.

4.24 (2H, s), 4.52 (2H, s), and 7.49 (6H, s)] exhibits signals characteristic of the quinodimethane structure. The u.v. and i.r. spectra are similar to those described for (2a).² Ozonolysis of (2b) gave (3) and treatment with dimethyl acetylenedicarboxylate in refluxing nitrobenzene gave the expected adduct (4),⁵† m.p. 211-213 °C. However, (2b) is remarkably resistant to reduction and can be recovered unchanged after treatment with H2-Pd at 50 °C and 3 atm.

The corresponding naphthoquinodimethane compound (1b) was prepared (11%) from 5,8-dimethylnaphthaquinone⁶ using an excess of methylmagnesium iodide or methyl-lithium, followed by HCl-dioxan, as a pale yellow, crystalline solid, m.p. 86-88 °C (EtOH); τ (CDCl₃) 2.47 (2H, s), 3.43 (2H, s), 4.18 (2H, s), 4.63 (2H, s), and 7.40 (6H, s); ν_{\max} (KBr) 1615, 907, 892, 795, and 755 cm⁻¹; λ_{\max} (log ϵ) 2·4 (7·076), 237 (4·105), and 275 (3·90) nm. It slowly decomposes at room temperature but is stable indefinitely at 0 °C.

(Received, 11th May 1979; Com. 502.)

- ¹ H. U. Wagner and R. Gompper, in 'The Chemistry of Quinone Compounds,' pt. 2, ed. S. Patai, Wiley, New York, 1974.
 ² J. M. Pearson, H. A. Six, D. J. Williams, and M. Levy, J. Amer. Chem. Soc., 1971, 93, 5034.
 ³ A. W. H. Wardop, G. L. Sainsbury, J. M. Harrison, and T. D. Inch, J.C.S. Perkin I, 1976, 1279.
 ⁴ P. de Bruyn, Compt. rend., 1950, 231, 295.
 ⁵ For similar reactions, see: I. T. Millar and K. E. Richards, J. Chem. Soc., 1967, 855.
 ⁶ O. C. Muserave and C. I. Webeter, I. Chem. Soc. (C) 1071, 255.

- ⁶ O. C. Musgrave and C. J. Webster, J. Chem. Soc. (C), 1971, 855.