Journal of

The Chemical Society,

Chemical Communications

NUMBER 7/1979

5 APRIL

New Approach to Anionic Transition Metal Alkyls; Synthesis and E.S.R. Characterisation of the d^1 Dialkylmetallate(III)'s $[M(\eta - C_5H_4R^1)_2R_2^2]^ (M = Ti, Zr, or Hf)^{\dagger}$

By MICHAEL F. LAPPERT,* PAUL I. RILEY, and PAUL I. W. YARROW (School of Molecular Sciences, University of Sussex, Brighton BN1 9QJ)

Summary Sodium naphthalide in tetrahydrofuran (thf) smoothly converts a d^0 metallocene dialkyl $[M(\eta-C_5H_4R^1)_2-R^2_2]$ (M = Ti, Zr, or Hf; R¹ = H, Me, or Pr¹; R² = Me, PhCH₂, Me₃CCH₂, Me₃SiCH₂, or Ph₂CH) into the corresponding d^1 dialkylmetallate(III) $[M(\eta-C_5H_4R^1)_2R^2_2]^-$, characterised by e.s.r. spectroscopy $[g_{av}, 1.991 \pm 0.007; a(^{1H}), 0.26 \pm 0.09 \text{ mT}; a(^{47},^{49}\text{Ti}), 0.87 \pm 0.16 \text{ mT}; a(^{91}\text{Zr}), 2.06 \pm 0.34 \text{ mT}; a(^{179}\text{Hf})$, not observed]; commercial samples of HfCl₄ contain 5—10% of the Zr analogue, as estimated by ¹³C n.m.r. (on an organometallic derivative) or e.s.r. spectroscopy of the derived d^1 dialkylmetallate-(III).

We report a procedure for preparing paramagnetic anionic transition metal alkyls (1) which we expect to have some generality [equation (1)]. This is illustrated here for some d^1 dialkylmetallate(III)'s, $[M(\eta-C_5H_4R^1)_2R^2_2]^-$ (M = Ti, Zr, or Hf).

$$[\mathrm{ML}_{n}\mathrm{R}_{m}] + \mathrm{Na}[\mathrm{C}_{10}\mathrm{H}_{8}] \xrightarrow{\mathrm{thf}} [\mathrm{Na}(\mathrm{thf})_{x}][\mathrm{ML}_{n}\mathrm{R}_{m}] \quad (1)$$
(1)

Although the chemistry of alkyltitanium(III) complexes is well documented, there are few examples of Zr or Hf analogues.¹ The new compounds $[Na(thf)_x][M(\eta-C_5H_4R^1)_2-R^2_2]$ (1) are obtained as dark-brown, air- and moisturesensitive solutions in thf upon titrating $[M(\eta-C_5H_4R^1)_2R^2_2]$ against the green thf solution of $Na[C_{10}H_8]$. The anions of (1) are unambiguously characterised by their thf solution e.s.r. spectra at 20 °C (Table), and are indefinitely stable

† No reprints available.

Table.	E.s.r.	data	on	$[M(\eta - C_5 H_4 R^1)_2 R^2_2]^{-1}$	in	\mathbf{thf}	at	20 °Cª
--------	--------	------	----	--	----	----------------	----	--------

$[M(\eta - C_5 H_4 R^1)_2 R^2_2]^-$			Multiplicity	a_	a(1H)/	<i>a</i> (M)/
Μ	R1	R ²	signalb	sav	mı	mı
Ti	н	Me	Septete	1.986	0.360	0.720
Ti	н	PhCH ₂	q	1.998	0.212	0.837
Ti	н	Me _s SiČH _s	q	1.985	0.275	1.025
Zr	н	PhČH ₂	q	1.986	0.245	1.750
Zr	н	Me ₃ CCH ₂	q	1.993	0.175	1.725
Zr	н	Ph ₂ CH	â	1.987	-e	1.000
Zr	н	Me ₃ SiCH ₂	q	1.984	0.300	2.375
Zr	Me	Me _s SiCH ₂	q	1.987	0.350	2.400
Zr	Pri	Me ₃ SiCH ₂	q	1.984	0.350	2.350
Hf	Pri	Me ₃ SiCH ₂	qt	1.987	0.320	~g

^a Obtained according to equation (1) from $[M(\eta - C_{s}H_{4}R^{1})_{2}R^{2}_{s}]$ (ref. 7). ^bq = quintet. ^c Resolved only at -20 °C; ref. 5 cites (for OEt₂ solution) g_{av} , 1.990, and $a(^{1}\text{H})$, 0.42 mT. ^d Broad signal. ^e Not resolved. ^f Part of an octet, overlapping with Zr analogue (see text). ^{g 177}Hf $(I = \frac{5}{2}, 18.5\%)^{-178}$ Hf $(I = \frac{5}{2}, 13.7\%)$ hyperfine coupling was not observed.

(not M = Hf) under these conditions. In the Figure is the spectrum of $[Zr(\eta-C_5H_5)_2(CH_2CMe_3)_2]^-$, featuring (i) the central 1,2,3,2,1-quintet due to four equivalent CH_2CMe_3 protons and (ii) the six ⁹¹Zr satellites ($I = \frac{5}{2}$, 11.23% natural abundance).

Neutral d^1 metallocene(III) alkyls are known for Ti: $[Ti(\eta-C_5H_5)_2R]$ (R = aryl or PhCH₂, but not R = Me, Et, or Pr¹),² the methyl compound being stabilised as the tetramethylaluminate $[Ti(\eta-C_5H_5)_2Me_2AlMe_2]$.³ However for Zr, only a single bulky alkyl is reported, as the dinitrogen complex $[Zr(\eta-C_5H_5)_2(\mu-N_2)R]$ [R = $(Me_3Si)_2CH$].⁴ Anionic species were hitherto represented solely by $[Ti(\eta - C_5H_5)_2R_2]^-$ (R = Me, Et, or Pr) formed from the $d^1 [{Ti(\eta - C_5H_5)_2Cl}_2]$ and a large excess of RMgX.5

The e.s.r. spectra of thf solutions of $[Ti(\eta-C_5H_4R^1)_2R^2_2]^$ show a central quintet for $R^2 = Me_3SiCH_2$ or PhCH₂ or a binomial septet for $R^2 = Me$, flanked by satellites originating from ⁴⁷Ti $(I = \frac{5}{2}, 17.3\%)$ and ⁴⁹Ti $(I = \frac{7}{2}, 5.5\%)$ (Table). For the Zr^{III} analogues, a noteworthy feature is the low ⁹¹Zr hyperfine coupling constant for the benzhydryl complex $[Zr(\eta-C_5H_5)_2(CHPh_2)_2]^-$, probably due to substantial spin density being associated with the phenyl rings. The g_{av} values and isotropic ⁹¹Zr coupling constants for the Zr^{III} anions are similar to those observed in $[Zr(\eta - C_5H_5)_2(PPh_2)_2]^{-1}$ [gav, 1.989; a(⁹¹Zr), 2.25 mT],⁶ indicative of metal-centred radicals, but contrast with the high g value (2.0037) and low $a(^{91}Zr) (0.85 \text{ mT}) \text{ found in } [Zr(\eta - C_5H_5)_2(\mu_2 - N_2) \{CH(SiMe_3)_2\}]$ and attributed to extensive electron delocalisation onto the dinitrogen ligand.4

Upon $Na[C_{10}H_8]$ -thf reduction of the compound believed to be $[Hf(\eta-C_5H_4Pr^1)_2(CH_2SiMe_3)_2]$ (on the basis of analytical, i.r., and ¹H n.m.r. data),⁷ a weak spectrum assignable to the Zr analogue was observed after several hours. Repetition of the experiment and immediate scanning of the spectrum showed a central eight-line signal, which is assigned to the overlap of two quintets arising from a mixture of the anions $[M(\eta - C_5 H_4 Pr^i)_2 (CH_2 SiMe_3)_2]^-$ (M = Zr, 5-10%, $g_{av} =$ 1.984; and M = Hf, $g_{av} = 1.987$). It appears that the Hf compound readily decomposes to diamagnetic product(s). Examination by ¹³C n.m.r. spectroscopy of various samples of organohafnium compounds obtained from commercially available HfCl₄, such as [Hf(η -C₅H₅)₂Cl₂] confirmed the presence of 5-10% of the Zr analogue.

The present results on d^1 alkylmetallates are complementary to those which we recently described⁸ dealing with d^0 cationic metal alkyls from d^1 precursors. The ready availability of stable organometallic compounds in adjacent

FIGURE. E.s.r. spectrum of $[Zr(\eta^5-C_5H_5)_2(CH_2CMe_3)_2]^-$ in thf at 20 °C.

oxidation states is unusual. Further objectives are directed towards (i) obtaining crystalline complexes {solid, but not crystalline, $[Na(thf)_n][Zr(\eta-C_5H_5)_2(CH_2SiMe_3)_2]$ has been isolated }, (ii) synthetic applications of alkylmetallates, and (iii) paramagnetic alkylmetallates of later transition elements.

We thank the S.R.C. for the award of a Fellowship (to P.I.R.) and, with I.C.I. Ltd. Corporate Laboratory, of a CASE studentship (to P.I.W.Y.), and Dr. J. Holton for his interest.

(Received, 13th December 1978; Com. 1326.)

¹ P. C. Wailes, R. S. P. Coutts, and H. Weigold, 'Organometallic Chemistry of Titanium, Zirconium and Hafnium,' Academic Press, New York, 1974; R. R. Schrock and G. W. Parshall, Chem. Rev., 1976, 76, 243.

- ² J. H. Teuben, J. Organometallic Chem., 1974, 69, 241. ³ J. Holton, M. F. Lappert, D. G. H. Ballard, R. Pearce, J. L. Atwood, and W. E. Hunter, J.C.S. Dalton, 1979, 45.

- ⁴ M. J. S. Gynane, J. Jeffery, and M. F. Lappert, J.C.S. Chem. Comm., 1978, 34.
 ⁶ H. H. Brintzinger, J. Amer. Chem. Soc., 1967, 89, 6871.
 ⁶ Unpublished data of J. Myatt (cited in ref. 4) (cf., J. G. Kenworthy, J. Myatt, and P. F. Todd, Chem. Comm., 1969, 263).
 ⁷ Data on this and other neutral [M^{IV}(η-C₈H₄R¹)₂R²₂] complexes will be published by us in J.C.S. Dalton.
 ⁸ M. F. Lappert and C. R. C. Milne, J.C.S. Chem. Comm., 1978, 925.