Rapid Nitrosation of Amines in Aqueous Alkaline Solutions by β-Substituted Alkyl Nitrites

By BRIAN C. CHALLIS* and DAVID E. G. SHUKER (Chemistry Department, Imperial College, London SW7 2AY)

Summary Alkyl nitrites bearing β -electron withdrawing substituents, either synthesized independently (e.g. 2-ethoxyethyl nitrite) or formed in situ by reaction between nitrosyl gases and an alcohol or carbohydrate group, effect the rapid nitrosation of basic secondary amines in 0.1 M NaOH at 25 °C.

The nitrosation of amines in aqueous acidic solutions (pH < 4) is well documented,¹ but much less is known about these reactions in non-acidic media. The only reagents for the formation of N-nitrosamines in neutral or alkaline aqueous solutions are nitrite in the presence of either acetaldehyde or chloral,² certain aliphatic and aromatic nitro-compounds,³ β -phenethyl nitrite (in aqueous dioxan),⁴ and nitrosyl gases such as N₂O₃,⁵ N₂O₄,⁵ and NOCl.⁶ Of these, only the nitrosyl gases react at a substantial rate at ambient temperatures. We now report that alkyl nitrites bearing electron-withdrawing β -substituents (either synthesized independently or formed *in situ* by reaction of nitrosyl gases with the corresponding alcohols)

also form *N*-nitrosamines readily under alkaline conditions. These reagents have been reported in the patent literature,⁷ but their capacity to effect *N*-nitrosation in aqueous base has apparently not been realised.

In the absence of alcohols, 1.14×10^{-2} M gaseous NOCl reacts completely in 4 min (time of analysis) with 2×10^{-3} M piperidine in 0.1 M NaOH to give ca. 7 \times 10⁻⁴ M N-nitrosopiperidine in addition to NO2⁻ by hydrolysis.⁶ Both gaseous N₂O₃ and N₂O₄ react similarly.⁵ Addition of 8% v/v (1.72 м) alcohol (e.g. MeOH, EtOH, or Bu^tOH) to the solution prior to reaction reduces the yield of N-nitrosopiperidine by ca. 90% and the corresponding alkyl nitrite is obtained instead. Further, the amount of N-nitrosopiperidine remains constant on leaving the reaction solution for 24 h. This demonstrates that alcohols and alkoxide ions react more readily with nitrosyl gases than HO- and H₂O, and that simple alkyl nitrites are ineffectual nitrosating agents in the absence of acids. Addition of ca. 1.5% v/v(0.5 M) polyhydric alcohol (e.g. ethylene glycol) to the aqueous reaction solution has an entirely different effect.

The amount of N-nitrosopiperidine formed after 4 min is lowered (ca. 4×10^{-4} M), but its concentration steadily increases over a period of 100 min to reach a maximum of 2×10^{-3} M. This suggests that 2-hydroxyethyl nitrite is an effective nitrosating agent for alkylamines in aqueous alkaline solutions[equation (1)].

Confirmation of this deduction was obtained by synthesizing 2-ethoxyethyl nitrite (EtOCH2CH2ONO)' and investigating its reactions in aqueous base. In the absence of amine, hydrolysis to nitrite occurred relatively rapidly in accordance with rate = $8.26 \times 10^{-4} \,\mathrm{l \, mol^{-1} \, s^{-1}}$ [EtOCH₂-CH₂ONO][NaOH] at 25 °C. In the presence of piperidine

TABLE 1. Reaction of 2-ethoxyethylnitrite with secondary amines in 0.1 M NaOH at 25 °C

10 ³ [EtOCH ₂ CH ₂ ONO]/м	10 ² [Amine]/м		$10^{3} k_{0}/s^{-1}$
0.726	0.83 Piperidine		2.55 a
**	1.67	- "·	4·15 a
"	2.38	**	5.85 a
1.90	0.059	**	0.60 р
5.10	0.059	"	1.59 b
6.11	0.059	**	2·22 b
10.1	0.059	"	3.20 b
0.726	11.6 Mor	pholine	0.365 a
	23.2	,,	0.710a
73	34.6	**	0.940 a
77	45.0	"	1.26 a

* Rate = k_0 [EtOCH₂CH₂ONO]. b Rate = k_0 [amine].

or morpholine, however, the corresponding N-nitrosamines formed concurrently. Data summarised in Table 1 show their formation followed rate = k_2 [EtOCH₂CH₂ONO]-[amine] with $k_2 = 0.278$ and $0.0031 \ \text{l mol}^{-1} \ \text{s}^{-1}$ at 25 °C for piperidine and morpholine, respectively. Thus, towards 2-ethoxyethyl nitrite, piperidine and morpholine are more reactive than HO⁻ by factors of 320 and 3.7, respectively.

TABLE 2. Effect of alcohols and carbohydrates on the reaction of gaseous 1.14×10^{-2} M NOCl with 2×10^{-3} M piperidine in 0·1 м NaOH at 25 °C

Additive	104 [N-Nitroso- piperidine]/м ^в	t _{max} /min
0·25 м F ₃ CCH ₂ OH	17	25
0·25 м FCH₂CH₂OH	16	120
0.05 м (HOCH₂CH₂)₃N	10.5	100
0.05 м D-glucose	20	8
0.05 м D-mannose	20	20

^a Maximum yield

The catalysis in aqueous base is not restricted to 1,2 diols. Results summarised in Table 2 show that substantial yields of N-nitrosopiperidine are also obtained rapidly in the presence of both β -fluoro- and β -aminoalcohols, and carbohydrate groups. As expected, the rate at which the maximum yield of N-nitrosopiperidine is gained relates to the electron-withdrawing capability of the β -substituent.

We thank the Ministry of Agriculture, Fisheries and Food and The Cancer Research Campaign for their support and a Studentship to D. E. G. S.

(Received, 15th December 1978; Com. 1333.)

A. R. Butler and B. C. Challis, 'The Chemistry of the Amino Group,' ed. S. Patai, Wiley, London, 1968, p. 277; J. H. Ridd, Quart. Rev., 1961, 14, 418.

² L. K. Keefer and D. P. Roller, Science, 1973, 181, 1245.

³ T. Y. Fan, R. Vita, and D. H. Fine, *Toxicology Letters*, 1978, 2, 5. ⁴ S. Oai, N. Asai, and K. Fujimori, *J.C.S. Perkin II*, 1978, 1024.

⁵ B. C. Challis and D. E. G. Shuker, J.C.S. Chem. Comm., 1976, 877; J.C.S. Perkin I, in the press; J.C.S. Perkin II, 1978, 1296.
⁶ B. C. Challis and D. E. G. Shuker, J.C.S. Perkin II, in the press.
⁷ R. Bermes and K. Schmeidl, G.P. 2,144,420/1973.