Stereoselective Association between Acetylacetonatobis(ethylenediamine)cobalt(III) Cation and Malonate Anion as Studied by the Rate of Amine Hydrogen Exchange¹

By USHIO SAKAGUCHI, HIROSHI NAKAZAWA, and HAYAMI YONEDA* (Department of Chemistry, Hiroshima University, Hiroshima 730, Japan)

Summary The rate of amine hydrogen exchange for acetylacetonatobis(ethylenediamine)cobalt(III) {[Co(acac) en)₂]²⁺} in the presence of malonate ion indicates that the malonate ion associates with the complex from the side opposite to acac and hydrogen bonds only to *trans* hydrogens in the direction approximately parallel to the two-fold axis of the complex.

A FEW studies² on diamagnetic metal complexes have shown the presence of ion-pair structures in solution. We have measured the rate of amine hydrogen exchange for $[Co(acac)(en)_2]^{2+}$ in the absence and presence of malonate ion and have obtained information on the structure of the ion-associated pair, $[Co(acac)(en)_2]^{2+}\cdots mal^{2-}$.[†]

The rate of amine hydrogen exchange was determined by measuring the n.m.r. signal intensities of *trans* and *cis* (to acac) NH₂ groups at suitable time intervals at 36.4 °C. For $[Co(acac)(en)_2]^{2+}$, signal assignment follows easily from the magnetic anisotropy of the Co³⁺ ion;³ *cis* NH₂ resonates at a field lower than *trans* NH₂. In the absence of mal²⁻, plots of ln(intensity) *vs.* time were linear for both *cis* and

The plots for *trans* NH₂ are curved, which contrasts with the straight line for *cis* NH₂. Analysis of the rate data for *trans* NH₂ led to two rate constants $k_{i(t)}^{mal}$ and $k_{i(s)}^{mal}$. These results, along with those without mal²⁻, are given in the Table. The two rates for *trans* NH₂ imply that mal²⁻ shows a dimensionation between the table to be denote the table.

trans NH₂. The plots⁺ with mal²⁻ are shown in Figure 1.

discrimination between the two hydrogens of the trans NH₂. A molecular model shows that trans NH₂ has two kinds of hydrogens, H_A (approximately parallel to the two-fold axis of $[Co(acac)(en)_2]^{2+}$ and H_B , and that the two carboxy groups of mal²⁻ can hydrogen-bond only to H_A (see Figure 2). It is reasonable for electrostatic reasons that mal²⁻⁻ should approach the complex from the side opposite to acac along the two-fold axis because of the negative charge on acac. It is known that the rate of deuterium exchange at the amine hydrogens is proportional to the concentration of OH⁻ ion² and is affected by added salts.^{4,5} Although the values of $k_{i(t)}^{\text{mal}}/k_e^{\text{mal}}$ and k_i°/k_e° are almost equal (2.40 and 2.49, respectively), $k_{i(t)}^{\text{mal}}$ and k_e^{mal} are *ca*. 4 times as large as k_i° and k_e° , respectively. This implies that mal²⁻ acts as a general base catalyst to the same extent on cis NH₂, trans H_B , and probably trans H_A . The rate of exchange of trans H_A is not accelerated by mal²⁻ but is reduced by a factor of 0.84. It is highly likely that the smaller value of $k_{t(s)}^{mal}$ compared to k_t° results from a hydrogen bond between $H_{\mathbb{A}}$

FIGURE 1. Plots of ln(intensity) vs. time for cis (\bigcirc) and trans (\bigcirc) NH₂ of [Co(acac)(en)₃]²⁺ in the presence of mal²⁻.

FIGURE 2. Proposed structure for the ion-associated pair, $[Co(acac)(en)_2]^{2+}\ldots mal^{2-}$. H_A is approximately parallel to the C_2 -axis. The malonate ion approaches from the side opposite to acac along the C_2 -axis and hydrogen bonds only to H_A .

TABLE. Second-order rate constants for amine hydrogen exchange (s⁻¹ mol⁻¹) for [Co(acac)(en)₂]^{2+, a}

Without mal ²⁻	Apparent pH 6·72 Apparent pH	$\frac{k_{e}^{\circ}}{1.58 \times 10^{4}}$ $\frac{k_{e}^{\text{mal}}}{k_{e}^{\text{mal}}} \sim 104$	k_t° 3.93×10^4 $k_{t(t)}^{\text{mal}}$	kî /kê 2:49		
				$k_{t(s)}^{mal}$	$k_{t(t)}^{\text{mal}}/k_c^{\text{mal}}$	$k_{t(s)}^{\text{mal}}/k_c^{\text{mal}}$
With mal	5.26	6.42×10^{4}	$1.94 \times 10^{\circ}$	$3.30 \times 10^{\circ}$	2.40	5.14×10^{-1}

* k_c° and k_i° are the rate constants for *cis* and *trans* NH₂ exchange in the absence of mal²⁻. k_c^{mal} and $k_{i(1)}^{mal}$ or $k_{i(2)}^{mal}$ are the rate constants for *cis* and *trans* NH₂ exchange in the presence of mal²⁻, respectively, and f and s in parentheses indicate the faster and slower rates of *trans* NH₂ exchange.

 \uparrow A saturated solution of [Co(acac)(en)₂]I₂ was used; the concentration of mal²⁻ is five times that of the complex.

Abbreviations used: Hacac = acetylacetone; en = ethylenediamine; Hamal = malonic acid.

J.C.S. Снем. Сомм., 1979

and mal²⁻. We conclude that H_A exchanges with deuterium much slower than cis NH2 and trans HB owing to the stereoselective association, assisted by the hydrogen bond as depicted in Figure 2.

This method appears promising for studying ion-pair complexes in solution.

(Received, 9th November 1978; Com. 1210.)

¹ For previous article in the series, 'Proton Magnetic Resonance Spectra of Metal Ammine Complexes' see U. Sakaguchi, K. Morito, and H. Yoneda, Chem. Letters, in the press.

- ^a For n.m.r. techniques for paramagnetic metal complexes, see, e.g., G. N. La Mar in 'NMR of Paramagnetic Molecules,' eds. G. N. La Mar, W. Dew. Horrocks, Jr., and R. H. Holm, Academic Press, New York, 1973, ch.10.
 ^a U. Sakaguchi, K. Maeda, and H. Yoneda, Bull. Chem. Soc. Japan, 1976, 49, 397, and references cited therein.
 ^d H. Yamatera and M. Fujita, Bull. Chem. Soc. Japan, 1967, 42, 3043.

 - ⁵ M. Iida, Ph.D. Thesis, Nagoya University, 1976.