## **Biosynthesis of Demethoxyviridin**

By JAMES R. HANSON\* and HARRY J. WADSWORTH (School of Molecular Sciences, University of Sussex, Brighton, Sussex BN1 9QJ)

Summary Demethoxyviridin has <sup>2</sup>H and <sup>13</sup>C enrichment and coupling patterns when derived from [2-<sup>2</sup>H<sub>3</sub>]-, [1-<sup>13</sup>C]-, and [1,2-<sup>13</sup>C<sub>2</sub>]-acetate and [2-<sup>2</sup>H<sub>2</sub>]-, [5-<sup>2</sup>H<sub>2</sub>]-, [2-<sup>13</sup>C]-, and [5-<sup>13</sup>C]-mevalonate, consistent with a triterpenoid origin.

DEMETHOXYVIRIDIN (1) which is produced by the fungus Nodulisporium hinnuleum is one of an interesting group of fungal metabolites with a steroid-like structure yet possessing an aromatic ring c<sup>1</sup> inviting comparison with mammalian steroid biosynthesis. Earlier degradative experiments on viridin (1;  $2\beta$ -OMe) biosynthesized from [2-1<sup>4</sup>C]mevalonate located labels at C-1, C-7, and C-15 consistent with its formation from two farnesyl residues in a steroid-like manner.<sup>2</sup> Some preliminary experiments have also been reported<sup>3</sup> on the biosynthesis of a similar fungal metabolite, wortmannin, which does not have an aromatic ring c. We now report some experiments which define the origin of the carbon skeleton of demethoxyviridin.

The  ${}^{13}$ C n.m.r. resonances of demethoxyviridin and six of its derivatives were assigned (see 1). The optimum time for incorporation studies with the fungus was determined. Sodium [1- ${}^{13}$ C]- and [1,2- ${}^{13}$ C<sub>2</sub>]-acetate, and [2- ${}^{13}$ C]- and [5- ${}^{13}$ C]-mevalonate were then fed separately to the fungus. The  ${}^{13}$ C enrichment (ranging from 0.4—1%) and  ${}^{13}$ C- ${}^{13}$ C coupling patterns of the resultant samples of demethoxyviridin are shown in (1), (2), and (3).

The coupling patterns, including the induced coupling,  $J_{11,12}$  and  $J_{8,14}$  which arise from adjacent centres enriched by  $[1-^{13}C]$  acetate, are in accordance with a triterpenoid biosynthesis. They show that the aromatic ring has been formed without rearrangement and that the extra carbon atom at C-4 originates from the 3'-position of mevalonate and thus the  $4\beta$ -methyl group of a protolanosterol/lanosterol precursor. This is of interest since the fungus also produces ergosterol which lacks both methyl groups



Structure (1) shows <sup>13</sup>C n.m.r. chemical shifts (p.p.m. from Me<sub>4</sub>Si; in Me<sub>5</sub>SO) and enrichment pattern for sample derived from CH<sub>3</sub><sup>13</sup>CO<sub>3</sub>Na; structure (2) coupling constants (in Hz) for sample derived from <sup>13</sup>CH<sub>3</sub><sup>13</sup>CO<sub>3</sub>Na; structure (3) enrichment pattern for sample derived from  $[2-^{13}C]$ mevalonate ( $\bigoplus$ ) and  $[5-^{13}C]$ mevalonate ( $\bigoplus$ ).

at this centre, and hence the additional atom might have arisen from the  $C_1$  pool. There are also chemical analogies for the formation of the furan ring at this position by the intramolecular condensation of a  $6\alpha$ -ester.<sup>4</sup> In fusidic acid biosynthesis<sup>5</sup> by the fungus *Fusidium coccineum*, it is the other methyl group ( $4\alpha$ -methyl) derived from C-2 of mevalonate which is retained. The [2-1<sup>3</sup>C]mevalonate results are in accordance with the earlier carbon-14 work whilst the [5-1<sup>3</sup>C]mevalonate results distinguish five of the isoprene units which go to form demethoxyviridin providing further evidence for excluding a diterpenoid precursor (*cf.* ref. 2).

The <sup>1</sup>H n.m.r. signals of demethoxyviridin and its derivatives were assigned from the 220 MHz spectra. [2-2H3]Acetate, and [2-2H2]- and [5-2H2]-mevalonate were then fed to the fungus. The demethoxyviridin was isolated (0.3-2% incorporation) and converted into its more toluble acetate. The <sup>2</sup>H n.m.r. spectra of the samples of she acetate were determined at 30.3 MHz<sup>+</sup> and the relative integrals of the signals were compared. The signals at  $\delta$  8.32 (20-H, furan-H), 5.48 (1-H), 3.76 (15-H), and 1.76  $(19-H_3)$  were labelled in the ratio 1.0:0.9:0.8:3.1 from the  $[2-^{2}H_{3}]$  acetate whilst the signals at  $\delta$  3.76 (15-H) and 5.48 (1-H) were equally labelled from  $[2-{}^{2}H_{2}]$  mevalonate. The aromatic signals at  $\delta$  8.08 (11- and 12-H) bore approximately 1.5 labels compared to the 2-H and 16-H signals ( $\delta$  2.88) which bore a total of 4 labels from the [5-2H<sub>2</sub>]mevalonate. When  $[2(R)-2-{}^{3}H,2-{}^{14}C]$  mevalonate  $({}^{3}H: {}^{14}C,$ 2.76:1) was incubated with the fungus, the demethoxyviridin had a <sup>3</sup>H: <sup>14</sup>C ratio corresponding to the retention of 0.67 atom/mole tritium based on the incorporation of three [2-14C]mevalonoid labels. Furthermore, when  $[4-(R)-4-^{3}H,2-^{14}C]$  mevalonate was fed to Nodulisporium hinnuleum, no tritium was incorporated into the demethoxyviridin (3.3% incorporation, 14C).

If it is assumed that the  $1\beta$ -acetoxy group replaces a pro-2(R)-mevalonoid hydrogen atom,<sup>6</sup> the  $[2-^{2}H]$ - and  $[2-^{3}H]$ -mevalonate results show that a pro-2(S) mevalonoid hydrogen atom is lost from C-15. Although the  $15\alpha$ - and 15 $\beta$ -hydrogen resonances are too close for a confident distinction to be made ( $\delta$  3.74 and 3.86, respectively), only the  $15\alpha$ -resonance appears to be labelled in accordance with inversion at this centre and the loss of a substituent from C-14. The loss of hydrogen from C-11 and C-12 is in accordance with the intervention of squalene and the loss of one hydrogen from the two farnesyl pyrophosphate residues. We have shown that [11-14C]squalene was incorporated into viridiol (0.45%) by Gliocladium deliquescens. The [2-2H3]acetate results show that the 19-methyl group retains all three deuterium labels, thus excluding a cyclopropanoid precursor related to cycloartenol from the biosynthesis. An interesting feature of the [2-2H3]acetate experiment is that the signals arising via the 2-methylene group of mevalonate show a small drop in integral compared to those derived via the 3'methyl group, reflecting the action of prenyl isomerase.

(Received, 29th December 1978; Com. 1390.)

† We thank Dr. F. W. Wehrli, Varian Associates, for the determination of the <sup>2</sup>H n.m.r. spectra.

<sup>1</sup> D. C. Aldridge, W. B. Turner, A. J. Geddes, and B. Sheldrick, J.C.S. Perkin I, 1975, 943.

<sup>a</sup> M. M. Blight, J. J. W. Coppen, and J. F. Grove, Chem. Comm., 1968, 1117; J. F. Grove, J. Chem. Soc. (C), 1969, 549; We thank Dr. J. F. Grove for helpful discussions.

<sup>3</sup> J. MacMillan, T. J. Simpson, and S. K. Yeboah, J.C.S. Chem. Comm., 1972, 1063.

- <sup>4</sup> T. Komeno, S. Ishihara, K. Takigawa, H. Itani, and H. Iwakura, Chem. and Pharm. Bull. (Japan), 1969, 17, 2586.
- <sup>5</sup> E. Caspi and L. J. Mulheirn, J. Amer. Chem. Soc., 1970, 92, 404.
- <sup>6</sup> L. J. Mulheirn and P. J. Ramm, Chem. Soc. Rev., 1972, 1, 259.