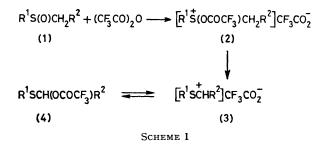
# **Journal of**

# The Chemical Society,

## **Chemical Communications**


NUMBER 2/1980

### Reaction of Pummerer Rearrangement Intermediates with Sulphides and Thiols. Synthesis of Sulphonium Salts and Dithioacetals

By RIKUHEI TANIKAGA,\* YUJI HIRAKI, NOBORU ONO, and ARITSUNE KAJI (Department of Chemistry, Faculty of Science, Kyoto University, Sakyo-ku, Kyoto 606, Japan)

Summary Sulphides (5) and thiols (6) react instantly with the Pummerer rearrangement intermediates (3) at 0 °C to give sulphonium salts (7) and dithioacetals (8), respectively.

The Pummerer rearrangement has been suggested to proceed via a sulphonium ion and a sulphur-stabilized carbonium ion.<sup>1</sup> Although an intermediary sulphonium ion has been postulated in many reactions, only a sulphur-stabilized carbonium ion has been postulated in aromatic substitutions.<sup>2</sup> When sulphoxides (1) and (CF<sub>3</sub>CO)<sub>2</sub>O are used, the Pummerer rearrangement is interpreted to proceed as shown in Scheme 1.<sup>3</sup>



In previous papers<sup>4</sup> we have described the nucleophilic attack of the sulphur atom of sulphides (5) and thiols (6) on the sulphur cation of acyloxysulphonium salts (2) at -80 °C. We now report a different mode of reaction at 0 °C, *i.e.*, an attack of the sulphur atom of (5) and (6) on the carbon cation

of intermediates (3), and the successful application of this reaction to the synthesis of sulphonium salts (7) and dithioacetals (8) (Scheme 2).

$$(3) + R^{3}SR^{4} \rightarrow [R^{1}SCHR^{2}-SR^{3}R^{4}]CF_{3}CO^{-}$$

$$(5) \qquad (7) \qquad \downarrow$$

$$(6) (R^{4} = H) \qquad \downarrow$$

$$CF_{3}CO_{2}R^{4} + R^{1}SCHR^{2}SR^{3}$$

$$(8)$$

$$SCHEME 2$$

In a typical procedure, solutions of  $(CF_3CO)_2O$  (13 mmol) and Me<sub>2</sub>S (13 mmol) in dry CH<sub>2</sub>Cl<sub>2</sub> were successively added to a solution of Me<sub>2</sub>SO (10 mmol) in dry CH<sub>2</sub>Cl<sub>2</sub> at 0 °C. The reaction was completed within a few minutes. After evaporation of CH<sub>2</sub>Cl<sub>2</sub> and Pummerer rearrangement products *in vacuo* at room temperature, the residue was washed with dry hexane. The sulphonium salt (**7a**) was obtained as a colourless liquid in 64% yield [ $\delta$  (CD<sub>3</sub>CN) 2·42 (3H, s, MeS), 2·95 (6H, s, MeS<sup>+</sup>), and 4·50 (2H, s)]; this n.m.r. spectrum was identical to that of the sulphonium salt prepared from MeSCH<sub>2</sub>SMe and MeOSO<sub>2</sub>F.

The salt (7a) was also instantly obtained in 70% yield from Me<sub>2</sub>S and the Pummerer rearrangement product (4,  $R^1 = Me, R^2 = H$ ) in the presence of CF<sub>3</sub>CO<sub>2</sub>H, but without an acid Me<sub>2</sub>S did not react with (4), *i.e.*, the CF<sub>3</sub>CO<sub>2</sub>H formed as a by-product in the Pummerer rearrangement plays an important role. Other sulphonium salts (7b-g) were similarly obtained (Table). On keeping at room temperature for a few days, (7a, b, e-g) were stable, but (7c and d) partially decomposed to MeSCH<sub>2</sub>SMe. Treatment of (3)

#### TABLE

| Reactant | R1            | R <sup>2</sup> | R³                                 | R⁴               | Product       | Isolated<br>yield/% |
|----------|---------------|----------------|------------------------------------|------------------|---------------|---------------------|
| (5)      | $\mathbf{Me}$ | Н              | Me                                 | Me               | (7a)          | 64                  |
| (5)      | Me            | Н              | Me                                 | Oct <sup>n</sup> | (7b)          | 65                  |
| (5)      | Me            | н              | Me                                 | But              | (7c)          | 54                  |
| (5)      | Me            | н              | Me                                 | PhCH.            | (7ď)          | 67                  |
| (5)      | Me            | н              | Et                                 | Et               | (7e)          | 70                  |
| (5)      | Me            | н              | -[CH <sub>2</sub> ] <sub>4</sub> - |                  | ( <b>7f</b> ) | 73                  |
| (5)      | $\mathbf{Ph}$ | н              | Me                                 | Me               | (7g)          | 40                  |
| (6)      | Me            | Н              | $\mathbf{Ph}$                      | н                | (8h)          | 94                  |
| (6)      | Me            | н              | PhCH,                              | н                | ( <b>8h</b> ) | 89                  |
| (6)      | $\mathbf{Ph}$ | н              | Ph                                 | н                | (8j)          | 69                  |
| (6)      | $\mathbf{Ph}$ | Me             | $\mathbf{Ph}$                      | н                | ( <b>8</b> ḱ) | 76                  |

with (6) gave (8) in the place of (7), probably because deprotonation from (7) was too rapid. Therefore, compounds (8) were isolated in high yields by distillation instead of washing with hexane in the above-mentioned procedure (Table).

We thank the Ministry of Education of Japan for a Grant-in-aid.

(Received, 11th October 1979; Com. 1081.)

<sup>1</sup>S. Oae in 'Organic Chemistry of Sulfur,' ed. S. Oae, Plenum Press, New York, 1977, p. 406.

<sup>2</sup> S. Ode in Organic Chemistry of Sanar, ed. S. Ode, Frenan Fress, Fren Fork, Fork, Fork, Port, p. 190.
<sup>2</sup> D. K. Bates, J. Org. Chem., 1977, 42, 3452.
<sup>3</sup> K. Omura, A. K. Sharma, and D. Swern, J. Org. Chem., 1976, 41, 957.
<sup>4</sup> R. Tanikaga, K. Nakayama, K. Tanaka, and A. Kaji, Chem. Letters, 1977, 395; R. Tanikaga, K. Tanaka, and A. Kaji, J.C.S. Chem. Comm., 1978, 865; R. Tanikaga, K. Nakayama, K. Tanaka, and A. Kaji, Bull. Chem. Soc. Japan, 1978, 51, 3089.