Synthesis of Prostaglandin A₂ from 3-endo-Bromotricyclo[3.2.0.0^{2,7}]heptan-6-one

By S. Mubarik Ali, Mark A. W. Finch, and Stanley M. Roberts* (Department of Chemistry, Salford University, Salford, Lancs. M5 4WT)

and Roger F. Newton,*

(Chemical Research Department, Glazo-Group Research Ltd., Ware, Herts. SG12 0DJ)

Summary Prostaglandin A₂ (8) has been synthesised in nine steps from the known tricyclic ketone (3).

Prostaglandin A_2 is an important, biologically active natural product and is amenable to simple modification to provide other primary prostaglandins. We recently described a synthesis of prostaglandin A_2 which involved an $S_{\rm N}'$ reaction on a cyclopentenyl epoxide. Now we have found that the same compound can be prepared by adaption of our earlier routes to primary prostaglandins involving the intermediacy of a 3-substituted bicyclo[3.2.0.0^{2,7}]heptan-6-one.²

The bicycloheptenone (1) was converted into the dibromoderivative (2) as described previously.³ Treatment of the ketone (2) with sodium hexamethyldisilazide gave the stable, crystalline tricyclic ketone (3).⁴ Reaction with the appropriate cuprate reagent⁵ gave the norbornanone (4). As expected, ⁶ the oxidation of (4) to the δ -lactone (5) using peracid proceeded with high selectivity. Dehydrobromination was achieved using diazabicycloundecene to afford the δ -lactone (6) [ν_{max} 1750 cm⁻¹, δ (CDCl₃) 6·50 (1H, m, H-7 or H-6), 6·30 (1H, m, H-6 or H-7), 5·60—5·30 (2H, m, H-1' and H-2'), 4·80 (1H, m, H-1), 4·00 (1H, m, H-3'), 3·00—2·50 (4H, m, H-5, H-8 and $2 \times \text{H-4}$), $1\cdot45$ — $1\cdot15$ (8H, m,

 $Reagents \quad \text{1,} \quad Br_2, \quad NaHCO_3, \quad CCl_4, \quad \text{11,} \quad NaN(SiMe_3)_2 \quad \text{111,} \quad \textit{m-ClC}_6H_4CO_3H, \quad \text{1v,} \quad 1,5-\text{diazabicyclo}\\ [5~4~0] \text{undec-5-ene,} \quad \text{v,} \quad \text{10,} \quad \text{10$ SCHEME DMF, heat, vi, HAlBu₂

 $4 \times \text{CH}_2$), $1\ 10 - 0.70$ (12H, s, $4 \times \text{Me}$), and $0\ 10$ (6H, s, S_1-Me_2), M^+ , m/e 364·2431] which rearranged on boiling in NN-dimethylformamide (DMF) to give the known γ -lactone (7) This γ -lactone was converted into (\pm) -prostaglandin- A_2 (8) as described previously 1 Reduction of the δ -lactone (6) with di-isobutylaluminium hydride furnished the hydroxy-aldehyde (9) which was converted into the biologically active prostanoid (10) by known methods 7

We thank the SRC and Glaxo-Group Research for a CASE studentship (to MAWF) and the Company for a post-doctoral Fellowship award (to SMA)

(Received, 15th October 1979, Com 1099)

- ¹ M A W Finch T V Lee, S M Roberts and R F Newton J C S Chem Comm 1979 677
- ¹ M A W Finch T V Lee, S M Roberts and R F Newton J C S Chem Comm 1979 677

 ² T V Lee, S M Roberts, M J Dimsdale R F Newton, D K Rainey and C F Webb, J C S Perkin I, 1978, 1176, N M Crossland S M Roberts R F Newton and C F Webb J C S Chem Comm 1978, 660

 ³ Z Grudzinski and S M Roberts, J C S Perkin I, 1975 1767

 ⁴ J C Gilbert T Luo and R E Davies, Tetrahedron Letters 1975, 2545

 ⁵ E J Corey and J Mann J Amer Chem Soc 1973 95, 6832

 ⁶ Z Grudzinski, S M Roberts, C Howard, and R F Newton J C S Perkin I, 1978, 1182

 ⁷ S M Ali, M A W Finch, S M Roberts, and R F Newton, J C S Chem Comm, 1979, 679