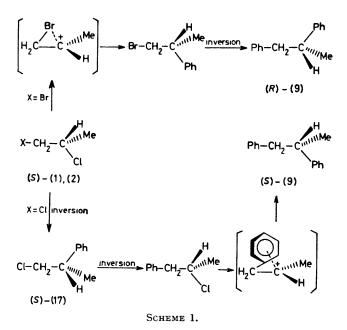
The Participation Effect of Halogen Atoms in Stereospecific Friedel–Crafts Alkylations

By Shinji Masuda,^a Masahito Segi,^b Tadashi Nakajima,^b and Sohei Suga*^b


(a Ashikaga Institute of Technology, Ashikaga, and b Department of Industrial Chemistry, Faculty of Technology, Kanazawa University, Kanazawa, Japan)

Summary The Friedel-Crafts alkylation of benzene with optically active 1,2-, 1,3-, 1,4-, and 1,5-dihalogenoalkanes gave the corresponding primary phenylalkyl halides with a stereospecificity which depended primarily on the type of terminal halogen or the variation in carbon chain length.

The stereochemical course of Friedel-Crafts alkylation has been assumed to proceed with almost complete racemization.¹ Recently, however, some instances of stereospecific alkylations which proceed with inversion or retention of configuration have been reported.² This communication describes new Friedel-Crafts alkylations of benzene with optically active 1,2-, 1,3-, 1,4-, and 1,5-dihalogenoalkanes, which gave the corresponding primary phenylalkyl halides with inversion or retention of configuration without skeletal rearrangement. The results are summarized in the Table. The alkylation of benzene with (S)-1,2dichloropropane (1) and aluminium chloride gave (S)-1,2diphenylpropane (9) with apparently, retention of configuration, and 1,1-diphenylpropane (16). The first stage

Me·CHCl·CH ₂ X	PhH, AlCl ₃ \longrightarrow Me·CHPh·CH ₂ X
х	x
(1) Cl (2) Br (3) ClCH ₂ (4) BrCH ₂ (5) ICH ₂ (6) Cl[CH ₂] ₂ (7) Br[CH ₂] ₂ (8) Cl[CH ₂] ₃	$\begin{array}{ccc} (9) & \mathrm{Ph} \\ (10) & \mathrm{ClCH}_2 \\ (11) & \mathrm{BrCH}_2 \\ (12) & \mathrm{ICH}_2 \\ (13) & \mathrm{Cl[CH}_2]_2 \\ (14) & \mathrm{Br[CH}_2]_2 \\ (15) & \mathrm{Cl[CH}_2]_3 \end{array}$

of the reaction would yield (S)-1-chloro-2-phenylpropane (17) followed by benzene alkylation to give (S)-(9).³ Thus the reaction of (1) to (17) proceeded with almost complete inversion of configuration as shown in Scheme 1. In

contrast, the reaction of benzene with (S)-1-bromo-2chloropropane (2) afforded a mixture of (R)-(9) and (16). Thus the first stage in the conversion of (2) into (9) proceeded with retention of configuration via a propylene bromonium ion intermediate as shown in Scheme 1.^{4,5} Although the Friedel-Crafts alkylations of aromatic hydrocarbons with secondary species such as optically active CD₃CHOHMe and 2-butanol have been shown to proceed through carbonium ion intermediates with almost complete racemization or rearrangement of products,^{1,6} the reaction of (1) and (2) proceeded with high stereospecificity.

TABLE. Alkylation of benzene with optically active dihalogenoalkanes in the presence of aluminium chloride^a

Starting dihalideb				Alkylated products ^c				
	$[\alpha]_{\mathrm{D}}^{25}$	Absolute	Temp	Time		Yield	$[\alpha]_{\rm D}^{25}$	Optical
Comp.	(c 10, CHCl ₃)	config.	/°C	/h	Comp.	1%	(c 10, CHCl ₃)	yield/ %
(1)	-5.58° (neat)	S	10	1.0	(9)	66	$+36.0^{\circ}$	60
(2)	-6.16° (neat)	S	10	1.0	(9)	64	$-23 \cdot 4^{\circ}$	36
(3)	-63·4°	R	7	0.5	(10)	86	$+35.5^{\circ}$	47
(4)	-33.6°	R	10	0.5	(11)	88	$+21.8^{\circ}$	29
(5)	-47·5°	R	10	0.5	(12)	69	$+21.0^{\circ}$	22
(6)	$+32 \cdot 3^{\circ}$	S	0	0.2	(13)	23	$+2\cdot4^{\circ}$	15
(6)	$+32\cdot3^{\circ}$	S	-20	0.7	(13)	85	-2.7°	17
(7)	$+21.6^{\circ}$	S	-10	0.1	(14)	85	$+2.9^{\circ}$	17
(8)	$+27.7^{\circ}$	S	-20	$1 \cdot 2$	(15)	95	-6.1°	26

^a Reactions were conducted with $4\cdot5$ mmol of dihalogenoalkane and $0\cdot45$ mmol of aluminium chloride in 15 ml of benzene. Carbon disulphide (8 ml) was added at below 0 °C. ^b Dihalogenoalkanes were prepared by chlorination of corresponding halogenohydrines with thionyl chloride in pyridine. The reported rotation of the dihalogenoalkane (S)-(1) is $-5\cdot87^{\circ}$ (neat) (W. Fickett, H. K. Garner, and H. J. Lucas, *J. Amer. Chem. Soc.*, 1951, 73, 5063). ^c The absolute configuration and maximum rotation of the following primary phenylalkyl halides were determined: $(S)-(10) + 77\cdot2^{\circ}$; $(S)-(12) + 114\cdot1^{\circ}$; $(S)-(13) + 16\cdot3^{\circ}$; $(R)-(15), -23\cdot9^{\circ}$. The following reported values were used for the others: (S)-(9), $+63\cdot5^{\circ}$ (R. A. Barnes and B. R. Juliano, *J. Amer. Chem. Soc.*, 1959, 81, 6462); $(R)-(11), -74\cdot0^{\circ}$ and $(R)-(14), -16\cdot6^{\circ}$ (P. A. Levene and R. E. Marker, *J. Biol. Chem.*, 1935, 110, 329).

I.C.S. CHEM COMM., 1980

The alkylation of benzene with (R)-1,3-dichlorobutane (3) and (R)-1-bromo-3-chlorobutane (4) gave (S)-1-chloro-3-phenylbutane (10) and (S)-1-bromo-3-phenylbutane (11), respectively as the main products with inversion of configuration, without skeletal rearrangement under the reaction conditions The lower optical yield of (10) or (11) than that of (S)-(9) could be caused by the increase in ionic character of the intermediate in the reaction of (3) or (4)In the reaction of (R)-3-chloro-1-iodobutane (5), (S)-1-iodo-3-phenylbutane (12) was obtained with inversion of configuration, along with 1-iodo-2-phenylbutane in 10% yield

The reaction with (S)-1-bromo-4-chloropentane (7) proceeded with some retention of configuration to give 1-bromo-4-phenylpentane (14) as shown in the Table The stereochemical course of the reaction of 1,4-dichloropentane (6) to 1-chloro-4-phenylpentane (13) varied with reaction temperature, *ie*, retention at 0 °C and inversion at -20 °C Therefore, two paths at least are competing in the alkylation of benzene with 1,4-dihalogenopentanes and they involve direct substitution of benzene and halogen participation to give a five-membered halonium ion intermediate as shown in Scheme 2^{5,7} However, the possibility of a carbonium ion intermediate should not be excluded

SCHEME 2

Finally, the alkylation of benzene with (S)-1,5-dichlorohexane (8) at -20 °C gave (R)-1-chloro-5-phenylhexane (15) with inversion of configuration

(Received, 14th September 1979, Com 986)

¹C C Price and M Lund, J Amer Chem Soc, 1940, 62, 3105 R L Burwell, Jr and S Archer, ibid, 1942, 64 1032, R L Burwell,

- ³S Masuda, T Nakajima, and S Suga, *J C S Chem Comm*, 1974 954 D L Ransley, *J Org Chem*, 1966, **31**, 3595 ⁴G A Olah, J M Bollinger, and J M Brinch, *J Amer Chem Soc*, 1968, **90**, 2587

- ⁶ G A Olah, 'Halonium Ions,' Wiley-Interscience, New York 1975 ⁶ P A Spanninger and J L von Rosenberg *Chem Comm*, 1970, 795, *J Amer Chem Soc*, 1972, 94, 1970, 1973 ⁷ G A Olah and P E Peterson, *J Amer Chem Soc*, 1968, 90, 4675