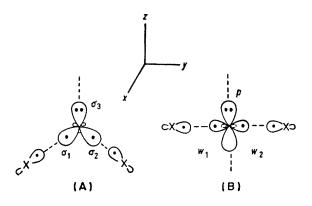
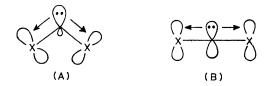

When is a Singlet Carbene Linear?

By WOLFGANG W SCHOELLER


(Fakultat fur Chemie, Universitat Bielefeld, Postfach 8640 D-48 Bielefeld, Federal Republic of Germany)

Summary Singlet carbenes CX_2 are linear if X are elements or groups less electronegative (Li to B) than the central carbon atom, and are bent if X are elements or groups more electronegative (N to F) than carbon

SINCE the discovery of methylene (1) (X = H) as a metastable intermediate¹ the scope of its reactivity has been widely explored ² Here we present theoretical evidence that the common rule, that a singlet carbene is bent, is violated in favour of a linear conformation (2), if X are elements or atomic groups less electronegative than carbon


The carbone CX_2 can be considered as being composed from bond formation between a hybridized carbon atom and two atoms (or groups) X The carbon atom possesses 4 valence electrons which can be placed into the orbitals $2s, 2p_x, 2p_y$, and $2p_z$ Alternatively, these orbitals can be used to form a set of hybrid orbitals (i) In (A) three sp^2 -hybrids (σ_1 to σ_3) and a perpendicular *p*-orbital (p_x) are constructed Two electrons are placed into the σ_3 orbital and two are used to form two-centre bonds with X This results in a singlet carbone with the configuration ${}^1(\sigma_3)^2$ (ii) In (B) the two sp-hybrids w_1 and w_2 are occupied by two electrons while the other two are placed into the orthogonal

 p_z (or $p_x)$ orbitals – This results in the singlet ground state configuration $1/\sqrt{2}~\{(p_x)^2-(p_z)^2\}$

Two extreme cases can now be differentiated

(1) If X is an element of the first to third group of the periodic table (e g, $X = L_1$ to B) it possesses empty p-orbitals which can form a stable two-electron three-centre bond with the orbital in the z-direction, $\sigma_3 \text{ in } (A)$ or $p_z \text{ in } (B)$ In (B) the two-electron three-centre bond is constituted by (a) through-space overlap between the atoms (groups) X

and (b) through-bond overlap between C and X. If the latter is more favourable the singlet carbene will adopt a linear conformation (B), alternatively a bent structure (A) will be preferred.³

TABLE. Geometry optimized ab initio calculations with the STO-3G basis set^a for the singlet carbenes : CX_2 with X = Lito F.

х	$r_{C-X}/\text{\AA}$	∠XCX/°
F	1.323	102.8
OHÞ	1.354	101.9
OMe ^b	1.358	101.0
NH,	1.356	109.2
н	1.127	100.2
BH,	1.419	180.0
${ m BeH}$	1.612	180.0
Li	1.842	180.0

⁸ W. J. Hehre, R. F. Stewart, and J. A. Pople, J. Chem. Phys., 1969, 51, 2657. ^b All trans conformation.

¹G. Herzberg and J. Shoosmith, Nature, 1959, 183, 1801.

 ² (Carbenes,' vols. 1 and II, eds. M. Jones and R. A. Moss, Wiley, New York, 1972.
 ³ Two-electron three-centre bonding has also been invoked in discussions on planar tetraco-ordinate carbon; see R. Hoffmann, R. G. Alder, and C. F. Wilcox, J. Amer. Chem. Soc., 1970, 92, 4992; J. B. Collins, J. G. Dill, E. D. Jemmis, Y. Apeloig, P. v. R. Schleyer, R. Seeger, and J. A. Pople, ibid., 1976, 98, 5419.

(ii) Conversely, if X is an element of the fourth to seventh group of the periodic table (e.g., X = Me to F) these (empty) p-orbitals are not available (e.g., X = Me) or doubly occupied (e.g., lone pairs in X = OMe, F). In this case a bent conformation (A) will be preferred, which is in agreement with the known bent structures of singlet carbenes.²

Our qualitative contention is supported by optimized ab initio calculations reported in the Table. For the singlet carbenes with X less electronegative than carbon they show the existence of a through-bond stabilized linear conformation (B) [case i(b)].

(Received, 14th September 1979; Com. 987.)