Journal of

The Chemical Society,

Chemical Communications

NUMBER 4/1980

Sensitizing Effect of Nitrous Oxide in the Radiolysis of Nickel(11) Iminodiacetate in Aqueous Solution

By SUDHINDRA N. BHATTACHARYYA and NARESH C. SAHA

(Nuclear Chemistry Division, Saha Institute of Nuclear Physics, 92, Acharya Prafulla Chandra Road, Calcutta-700 009, India)

Summary Nitrous oxide has been found to initiate a chain process in the radiolytic degradation of Ni¹¹ iminodiacetate in aqueous solution.

The role of N_2O in sensitizing the radiolytic degradation of methanol and isopropyl alcohol has recently been reported.^{1,2} Such behaviour in the case of a metal complex containing a ligand with an abstractable hydrogen atom would be unique. Our study with Ni¹¹ iminodiacetate (IDA) points towards such a possibility.

Ni^{II}IDA undergoes ligand degradation on radiolysis into glycine and carbonyl compounds, *e.g.*, formaldehyde and glyoxalic acid. When an OH scavenger such as $HCO_2^$ or t-butanol is present during radiolysis, no such ligand degradation is observed. The OH radical, therefore, appears to be responsible only for causing damage to the ligand. As for Ni^{II} ethylenediaminetetra-acetate (EDTA),³ Ni^{II} nitrilotriacetate (NTA),⁴ or the ligand IDA⁵ itself it seems pertinent to assume that OH reacts at the ligand site of the complex forming a C-centred radical [equation (1)], where Ni^{II}RNHCH₂CO₂⁻ represents Ni^{II}IDA.

$$OH + Ni^{II}RNHCH_2CO_2^- \longrightarrow Ni^{II}RNHCHCO_2^- + H_2O$$
 (1)

This radical may either undergo electron transfer with the metal centre of the metal complex or may disproportionate. However, the observed result that G(gly) = $G(>C=O) = 1.3 = ca. 1/2G_{OH}$ supports disproportionation rather than electron transfer, [equation (2)].

$$\begin{array}{r} H_2O \\ 2 \text{ Ni}^{11}\text{RNHCHCO}_2^- \longrightarrow \text{Ni}^{11}\text{RNH}_2 \\ + \text{CHOCO}_3H + \text{Ni}^{11}\text{RNHCH}_3\text{CO}_3^- \quad (2) \end{array}$$

This simple radiolytic model fails to account for the observed behaviour in the presence of N₂O. Thus in N₂O saturated solution, G(ligand) *i.e.* G(gly) or G(>C=O) was found to be as high as 12·0 molecules per 100 eV (Table). If it is assumed that $k(\mathbf{e}_{a_1}^- + \text{Ni}^{11}\text{IDA})$ is not very high, then it is to be expected that all the $\mathbf{e}_{a_1}^-$ would be scavenged by N₂O, [equation (3)]. If this occurs G(gly) or G(>C=O)

$$e_{a1}^{-} + N_2 O \xrightarrow{H_2 O} N_2 + OH + OH^{-}$$
(3)

should not be higher than $1/2[G_{0H} + G(e_{a_1})] = ca.$ 3.0 in any case (since N₂O scavenges⁶ into the spurs giving an effective $G_{0H} = 6.0$ in N₂O saturated solutions).

To trace the reason behind the enhanced yield, radiolysis was carried out using different concentrations of the complex under N₂O saturated conditions. It is evident from Figure 1 that the trend of enhanced degradation of the ligand occurs even at concentrations far below that at which $G(CHOCO_2H)$ starts increasing more gradually, [Ni¹¹IDA] ca. 5 mM. The enhanced degradation at such

TABLE. Effect of N₂O on the observed G values in the radiolysis of Ni^{II}-IDA at neutral pH. [Ni^{II}-IDA] = 1.0×10^{-2} M.

Scavenger				
s	[S]	$G(CHOCO_2H)$	$G(CH_2O)$	G(glycine)
None		$1 \cdot 1 + 0 \cdot 1$	0.2	1.3 + 0.2
N ₂ O	Saturated	$10\cdot 2 \stackrel{-}{\pm} 0\cdot 4$	1.9 ± 0.1	12.0 ± 0.4
-	$(ca. \ 2\cdot 5 \ imes \ 10^{-2}$ м)			

low concentrations, *i* e, at $ca = 10^{-4}$ M, clearly indicates that N_{1} formed by reaction between e_{aq} and N_{1} can in no way be held responsible for this extra degradation of the ligand

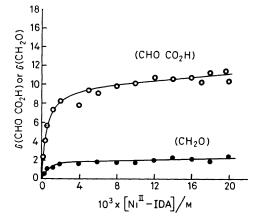


FIGURE 1 Effect of initial concentration of Ni^{II}IDA on $G(CHOCO_2H)$ and $G(CH_2O)$ in the radiolysis of aqueous solution of N₁^{II}IDA at neutral pH under N₂O saturated conditions

The role of the C-centred radical formed by reaction (1) above seems to be more decisive in this regard It is reasonable to assume that the ligand radical undergoes electron transfer with the N_2O molecule, thereby initiating a chain reaction, with the continuing formation of OH radicals in the process, [equation (4)]

$$\begin{array}{r} \begin{array}{r} H_2O\\ N_1^{II}RNHCHCO_2^- + N_2O \xrightarrow{} N_1^{II}RNH_2\\ + CHOCO_2H + OH + N_2 + OH^-\\ \hline H_2O\\ \xrightarrow{} N_1^{II}RNH_2 + CH_2O + CO_2 + OH + N_2 + OH^- \end{array}$$
(4)

Since G(ligand) is not very high, a short chain mechanism must be considered. It is possible to assume that the disproportionation of C-centred radicals as discussed earlier, constitutes the chain termination step. The reaction mechanism would then comprise the following reactions,

$$RH_2 + OH \longrightarrow RH$$
 (1)

$$RH \cdot + N_2O \longrightarrow P_1 + OH$$
 (4)

$$RH \cdot + RH \cdot \longrightarrow P_2 + RH_2$$
 (2)

- ¹ J H Baxendale and G P Gilbert, Science, 1965, 147, 1571 ² T G Ryan and G R Freeman, J Phys Chem, 1977, 81, 1455 ³ S N Bhattacharyya and K P Kundu, Radiation Res., 1972, 51, 45 ² T ³ S
- V Srisankar and S N Bhattacharyya, J C S Dalton in the press 4 E
- ⁶S N Bhattacharyya and N C Saha, *Radiation Res.*, 1976, 68, 234 ⁶T I Balkas, J H Fendler, and R H Schuler, J Phys Chem, 1970, 74 4497

where RH_2 represents N_1 ^{IIIDA} and P_1 and P_2 are products such that the total products $P = P_1 + P_2$ An estimate of the ligand radical (RH-) which induces the chain process may be made from the relation

$$G(\mathbf{P}) = G(\mathbf{Gly}) = G(\mathbf{>C=O}) = \frac{1+\alpha}{2(1-\alpha)}$$
 $G_{\mathbf{OH}}$

where α represents the distribution of RH between reactions (4) and (2) and $G_{0H} = G_{0H} + Ge_{aq}^{-}$ Since G(P) = 120and $G_{OH} = 6$ 0, $\alpha = ca$ 0 6 which is a reasonable value for the chain propagation step

From a kinetic analysis of the above reaction scheme one can easily visualize that $G(\mathbf{P})$ should be proportional to the inverse square root of dose rate (D_r) following equation (5)

$$G(P) = \frac{1}{2}G_{OH} + k_4[N_2O] \sqrt{(G_{OH}/2k_2)} \sqrt{(1/D_r)}$$
 (5)

where G_{OH} is again equal to $G_{OH} + G(e_{aq})$ This expectation is corroborated by the observed results shown in Figure 2 where a smooth straight line with the required intercept of $1/2 \; G_{\text{OH}}$ is obtained

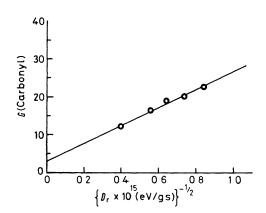


Figure 2 $\,$ Product yields plotted against (dose rate)^{0.5} $\,$ [N_2O] ca $2.5\,\times\,10^{-2}$ M $\,$ [N1^{11} IDA] ca $1.0\,\times\,10^{-2}$ M

(Received, 17th September 1979, Com 996)