Stereochemistry of the Dehydrogenation of (2S)-Histidine in the Biosynthesis of Roquefortine and Oxaline

By ROBERT VLEGGAAR* and PHILIPPUS L. WESSELS

(National Chemical Research Laboratory, Council for Scientific and Industrial Research, P.O. Box 395, Pretoria 0001, Republic of South Africa)

Summary A comparison of spectral data indicates the E configuration for the dehydrohistidine unit in both roquefortine and oxaline; incorporation of (2S,3S)- and (2S,3R)-[3-3H]histidine into roquefortine by Penicillium roqueforti and into oxaline by Penicillium oxalicum proceeded in each case with removal of the pro-S hydrogen atom from C(3).

NUMEROUS $\alpha\beta$ -dehydroamino acids have in recent years been recognised as constituents of metabolites derived from micro-organisms¹ and one, dehydroalanine, has been identified at the active site of the enzyme histidine ammonia-lyase^{2,3} and (2S)-phenylalanine ammonia-lyase.⁴ Only a few studies, however, have been reported on the stereochemical course of the *in vivo* formation of $\alpha\beta$ dehydroamino acids.⁵⁻⁷

The recent isolation and structure elucidation of the neurotoxin roquefortine (1) from cultures of *Penicillium* roqueforti⁸ and our work on the structure of oxaline (2), a metabolite isolated from *Penicillium oxalicum*,^{9,10} prompted us to investigate the stereochemistry of the dehydrogenation of (2S)-histidine in these two metabolites.

X-Ray crystallography⁹ and ¹³C n.m.r. spectroscopy¹⁰ established the E configuration for the 12,15 double bond in oxaline (2). The signal due to C(13) (166.1 p.p.m.) in the

coupled nuclear Overhauser enhanced ¹³C n.m.r. spectrum of (2) appears as a doublet with ${}^{3}J(CH)$ 10.0 Hz. The magnitude of ${}^{3}J(CH)$ is indicative of the E configuration.^{6,7,11} The assignment of the natural abundance ¹³C n.m.r. spectrum of roquefortine (1) derived from coupled, proton noise decoupled, and selective proton decoupled spectra and selective population inversion experiments¹² is given in Table 1 and enabled us to determine the hitherto unknown 3,17 double bond configuration. The value of 8.6 Hz for $^{3}J(CH)$ between C(4) and H(17) favours the *E* configuration for roquefortine. This result was verified as follows. The ¹³C n.m.r. assignments of the reported¹³ photoproduct of roquefortine, for which the trivial name 'isoroquefortine' (3) is suggested, are given in Table 1. The magnitude of $^{3}J(CH)$ between C(4) and H(17), 4.7 Hz is indicative of the Z configuration for the 3,17 double bond as shown in (3). This result is in agreement with the 4.9 Hz for $^{3}J(CH)$ observed between C(4) and H(10) in viridamine (4)¹⁴ which has the Z-configuration.15

In order to determine which of the two diastereotopic hydrogens at C(3) of (2S)-histidine is removed in the dehydrogenation reaction samples of (2S,3S)- and (2S,3R)- $[3-^{3}H]$ histidine, (5a) and (5b), respectively were prepared from 4(5)- $[formyl-^{3}H]$ formylimidazole.¹⁶ The two samples were each mixed with (2S)- $[ring-2'-^{14}C]$ histidine as an internal standard, to give the desired ^{3}H : ¹⁴C ratios and crystallised to constant activity. The configurational purity of the (2S,3R)- $[3-^{3}H]$ histidine (5b) sample $(^{3}H: ^{14}C$ $6\cdot50)$ was assayed using histidine ammonia-lyase (E.C.

4.3.1.3), an enzyme which stereospecifically eliminates the 3-*pro-R* hydrogen atom together with ammonia to give urocanic acid $({}^{3}H : {}^{14}C \ 0.44; {}^{3}H \ retention : 6.8\%).$ ¹⁷

Table	1.	¹³ C n.m.r.	data	for	roquefortine	(1)	
and isoroquefortine (3)							

	(1)	(3)
	$\delta(c)/p.p.m.^{a}$	$\delta(c)/p.p.m.^{a}$
C(1)	166·7S	165·4S
C(3)	121·9S	$125 \cdot 7S$
C(4)	159.2S	$158 \cdot 2S$
C(6)	$78 \cdot 3D$	77.8D
C(8)	149·8S	150.2S
C(9)	109·1D	$109 \cdot 0 D$
C(10)	128.9D	$128 \cdot 8D$
C(11)	119·0D	118.7D
C(12)	125.0D	$125 \cdot 0 \mathrm{D}$
C(13)	128·5S	$128 \cdot 7S$
C(14)	61·5S	61.6S
C(15)	$36 \cdot 8T$	$37 \cdot 3T$
C(16)	$58 \cdot 8 D$	$59 \cdot 0 \mathrm{D}$
C(17)	110.9D	$105 \cdot 6D$
C(18)	125.5S	136·8S
C(20)	$136 \cdot 4D$	$135 \cdot 3D$
C(22)	$134 \cdot 3D$	117.7D
C(23)	40·9S	40.9S
C(24)	$143 \cdot 2D$	143·4D
C(25)	114.5DD	114·4DD
C(26)	$22 \cdot 9 Q$	$23 \cdot 0$
2(27)	$22 \cdot 5 Q$	22.5Q

^a Relative to internal Me₄Si

(

Each of the two substrates (5a) and (5b) was fed to cultures of *P. roqueforti* HPB 061175 and *P. oxalicum* MRC 100. Good incorporations (1-4%) of the substrates into both roquefortine and oxaline were observed. The results (Table 2) indicate that the 3-pro-S hydrogen of (2S)histidine is stereospecifically eliminated in each case whereas tritium from the 3-pro-R position is retained. The dehydrogenation step in the biosynthesis of both roquefortine and oxaline must involve the syn elimination of H(2) and the pro-S hydrogen at C(3) of (2S)-histidine.

TABLE 2. Incorporation of $[3-^{3}H]$ histidine into roquefortine (1) and oxaline (2)

Configuration	³ H: ¹⁴ C ratio	(1) ³ H : ¹⁴ C ratio	(2) 3H : 14C ratio
2S,3S (5a)	6·50	$0.30 \ (4.6)^{a}$	$\begin{array}{c} 0{\cdot}30 \ (\textbf{4}{\cdot}6) \\ 6{\cdot}24 \ (96{\cdot}0) \end{array}$
2S,3R (5b)	6·50	$6.12 \ (94.2)$	

^a Figures in brackets are % ³H retention.

Stereospecific syn elimination of the 3-pro-S hydrogen has been observed for (2S)-tyrosine in the biosynthesis of mycelianamide,⁵ for the incorporation of (2S)-tryptophan into cryptoechinuline A⁶ and in the side-chain dehydrogenation of N-Boc-(2S)-tryptophan.⁷ In each case the dehydroamino acid unit formed has the Z configuration. The hydrogen atom which is eliminated in the above quoted studies⁵⁻⁷ is not the same as the one which is lost from C(3) of histidine in the biosynthesis of roquefortine and oxaline, although it is designated as 3-pro-S in all these instances.

The close biogenetic relationship between roquefortine and oxaline is indicated by the occurrence of roquefortine

together with oxaline in cultures of P. oxalicum.¹⁸ The precursor rôle of roquefortine in oxaline biosynthesis is under investigation.

We thank Dr. P. M. Scott for the culture of P. roqueforti.

(Received, 30th October 1979; Com. 1155.)

¹ U. Schmidt, J. Häusler, E. Öhler, and H. Poisel, Progr. Chem. Org. Nat. Prod., 1979, 37, 251.

² J. L. Givot, T. A. Smith, and R. H. Abeles, J. Biol. Chem., 1969, 244, 6341.

³ R. B. Wickner, J. Biol. Chem., 1969, 244, 6550.

⁴ K. R. Hanson and E. A. Havir, Arch. Biochem. Biophys., 1970, 141, 1.

⁵ G. W. Kirby and S. Narayanaswami, J.C.S. Chem. Comm., 1973, 322; J.C.S. Perkin I, 1976, 1564.
⁶ R. Cardillo, C. Fuganti, D. Ghirenghelli, P. Grasselli, and G. Gatti, J.C.S. Chem. Comm., 1975, 778.
⁷ M. E. Gustafson, D. Miller, P. J. Davis, J. P. Rosazza, C.-J. Chang, and H. G. Floss, J.C.S. Chem. Comm., 1977, 842.

^a P. M. Scott, M.-A. Merrien, and J. Polonsky, *Experientia*, 1976, 32, 140.
^b D. W. Nagel, K. G. R. Pachler, P. S. Steyn, P. L. Wessels, G. Gafner, and G. J. Kruger, *J.C.S. Chem. Comm.*, 1974, 1021.
¹⁰ D. W. Nagel, K. G. R. Pachler, P. S. Steyn, R. Vleggaar, and P. L. Wessels, *Tetrahedron*, 1976, 32, 2625.
¹¹ J. A. Stubbe and G. L. Kenyon, *Biochemistry*, 1971, 10, 2669; J. L. Marshall and R. Seiwell, *J. Magnetic Resonance*, 1974, 15, 150; C. A. Kingsbury, D. Draney, A. Sopchik, W. Rissler, and D. Durham, J. Org. Chem., 1976, 41, 3863; E. P. Prokof'ev and E. I. Karpeiskaya, Tetrahedron Letters, 1979, 737. ¹² K. G. R. Pachler and P. L. Wessels, J. Magnetic Resonance, 1977, 28, 53.

¹³ P. M. Scott and B. P. C. Kennedy, J. Agric. Food Chem., 1976, 24, 865.
¹⁴ R. Vleggaar and P. L. Wessels, unpublished results.

15 C. W. Holzapfel and J. J. Marsh, S. African J. Chem., 1977, 30, 197; A. Dippenaar, C. W. Holzapfel, and J. C. A. Boeyens, ibid., p. 161.

¹⁶ A. R. Battersby, M. Nicoletti, J. Staunton, and R. Vleggaar, J.C.S. Perkin I, 1980, 43.

¹⁷ Ref. 2. Note that their conclusions must be reversed since they were based upon the supposed stereospecificity of fumarate hydrase which was then incorrectly assigned; J. Rétey, H. Fierz, and W. P. Zeylemaker, *F.E.B.S. Letters*, 1970, **6**, 203. ¹⁸ R. Vleggaar, unpublished results.

162