Reversible Isomerization of Cyclo-octasulphur Monoxide; Preparation and X-Ray Crystal Structure of S₈O·SbCl₅

By Ralf Steudel, Torsten Sandow, and Jurgen Steidel
(Institut fur Anorganische und Analytische Chemie, Technische Universität Berlin, D-1000 Berlin 12,
Federal Republic of Germany)

Summary The reaction of S_8O and $SbCl_5$ in CS_2 gave $S_8O \cdot SbCl_5$ (71% yield) which was shown by X-ray crystallography to contain S_8O in an isomeric conformation compared with pure S_8O which can be recovered from the adduct in its usual conformation by recrystallization from acetone or carbon disulphide

Cyclo-octasulphur monoxide S_8O is prepared by the oxidation of S_8 with $CF_3CO_3H^1$ and crystallizes as an unstable orange material containing puckered S_8 rings with exocyclic oxygen atoms in axial positions 2 In an attempt to prepare more stable derivatives the synthesis of adducts with metal halides as electron acceptors was investigated

Reaction of S_8O with $SbCl_5$ in CS_2 at 20 °C and subsequent cooling to -50 °C for 9 days yielded an orange crystalline product of composition S_8O $SbCl_5$ (yield 71%)

Crystal data $S_8O\cdot SbCl_5$, orthorhombic, space group Pcmn, a=1052(5), b=880(3), c=1621(6) pm, Z=4, $D_c=2\cdot 53$ g cm⁻³ (-100 °C), $M=571\cdot 5$ (Mo- K_α , $\lambda=71069$ pm, $\mu=37\cdot 7$ cm⁻¹) Data were collected at -100 °C using a Syntex $P2_1$ diffractometer. The intensities of 1621 reflections were measured ($2\theta<50^\circ$), 1336 which had $I_{0b8}>2\sigma(I_{0b8})$ were considered observed and used in the structure analysis. The structure was solved by Patterson synthesis and refined to R=0083 using anisotropic thermal parameters but without absorption correction †

[†] The atomic co-ordinates for this work are available on request from Prof Dr G Bergerhoff, Institut fur Anorganische Chemie, Umiversitat, Gerhard-Domagk-Str 1, D-5300 Bonn 1, West Germany Any request should be accompanied by the full literature citation for this communication

The crystal lattice consists of $S_8O\cdot SbCl_5$ molecules of C_8 symmetry with only van der Waals type intermolecular interactions. The S_8O unit differs from molecular S_8O by an equatorially-bonded oxygen atom as well as by significantly different SO and SO bond lengths (see Figure 1).

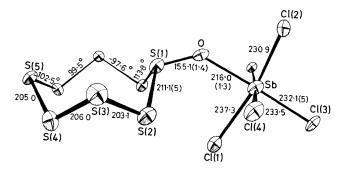


FIGURE 1 Molecular structure, bond lengths (pm) and torsional angles of $S_8O \cdot SbCl_5$.

While the SO bond length has increased from 148·3(9) in S_8O to 155(1) pm, the adjacent bonds S(1)-S(2) have decreased in length from 220·0(4) in S_8O to 211·1(5) pm which is consistent with the explanation of electron delocalization from the oxygen atom into antibonding molecular orbitals at the neighbouring sulphur atoms; removal of electrons from the oxygen by co-ordination of $SbCl_5$ diminishes this effect. The bond angle at oxygen is $133\cdot3(7)^\circ$.

The co-ordination at the Sb atom is approximately octahedral with a mean Sb–Cl distance of 233 pm and angles Cl–Sb–Cl between 86 and 94°. Three Cl atoms are located on the molecular mirror plane. This is the second structural determination of a sulphoxide–SbCl₅ adduct, although only incomplete information about the structure of $Ph_2SO \cdot SbCl_5$ is available.⁴

At 25 °C solid S₈O·SbCl₅ decomposes within 5 min to SOCl₂, SbCl₃, and S₈. On dissolution of the adduct in

acetone and subsequent cooling and recrystallization from dilute solutions in CS_2 , pure S_8O was obtained whose Raman spectrum was identical to that of an original sample, prepared by oxidation of S_8 and which therefore must consist of molecules with axially-bonded oxygen atoms. Since pyramidal inversion at the trico-ordinated sulphur atom is unlikely at low temperatures^{5,6} a conformational inversion of the eight-membered ring is likely to take place during preparation and dissociation of $S_8O\cdot SbCl_5$ (see Figure 2).

FIGURE 2. Possible pathway for the exchange of the oxygen atom between axial and equatorial positions by S₈ ring inversion.

We thank Priv.-Doz. Dr. J. Pickardt for assistance in solving the X-ray structural analysis.

(Received, 29th October 1979; Com. 1147.)

- ¹ R. Steudel and J. Latte, Angew. Chem. Internat. Edn., 1974, 13, 603.
- ² P. Luger, H. Bradaczek, R. Steudel, and P. Rebsch, Chem. Ber., 1976, 109, 180.
- ³ R. Steudel, Angew. Chem. Internat. Edn., 1975, 14, 655.
- ⁴ I. Lindquist, 'Inorganic Adduct Molecules of Oxo-Compounds,' Springer, Berlin, 1963.
- ⁵ P. Laur, 'Sulfur in Organic and Inorganic Chemistry,' ed. A. Senning, Vol. 3, p. 201—4, Marcel Dekker, New York, 1972.
- ⁶ F. Wudl, R. Gruber, and A. Padwa, Tetrahedron Letters, 1969, 2133.