Isomerisation of Prop-2-ynylic Esters into 1,2- and 1,3-Dienyl Esters†

By Richard C. Cookson,* Michael C. Cramp, and Philip J. Parsons* (Chemistry Department, University of Southampton, Southampton SO9 5NH)

Summary While the prop-2-vnvl acetates (1) rearrange to the allenyl acetates (2) in boiling benzene containing copper(I) chloride, in the presence of silver trifluoroacetate the butadienyl acetates (3), useful in Diels-Alder reactions, are formed in high yield.

ALLENYL (2), and particularly 1,3-dienyl (3), acetates are valuable synthetic intermediates. We report improved and specific ways of making them from prop-2-ynyl acetates (1).1,2

 $a: R^1 = H, R^2 = Me$

a, $R^{-} = 11$, $R^{-} = 16$ b; $R^{1}R^{2} = [CH_{2}]_{4}$ c; $R^{1}R^{2} = [CH_{2}]_{3}$ d; $R^{1} = H$, $R^{2} = 4$ -methylcyclohex-3-enyl

Reagents: i, Cu₂Cl₂, boiling benzene; ii, AgOCOCF₃, in boiling benzene.

When the acetate (1a) was heated in benzene containing a catalytic quantity of silver tetrafluoroborate, the isomer (2a) was formed in 60% yield, as reported.2 A better procedure, however, was to boil (1a) in benzene in the presence of Cu₂Cl₂, which gave (2a) quantitatively. Heating (1a) in benzene (or toluene) with silver trifluoroacetate surprisingly produced the diene (3a) as the sole product (7:1 trans: cis). These conditions also transformed the

presumed intermediate (2a) into (3a). The same result was obtained when platinum chloride was used as catalyst in place of silver trifluoroacetate.

$$R^{2}$$
 R^{3}
 R^{3

The dienes (3) underwent Diels-Alder reactions with suitable electron-poor olefins (Table).

Thus (1a) (3.4 g) in benzene (60 ml) containing silver trifluoroacetate (0.3 g) was heated under reflux for 6 h, cooled, and poured into water, and the organic layer was washed with aqueous NaHCO3. Evaporation of the solvent gave (3a) (3·1 g, 91%), b.p. 62 °C at 15 mmHg (lit.,3 66-68 °C at 29 mmHg).

TABLE

Diene	Dienophile	Solvent	Product ^a	Yield b/%
(3a)	CH ₂ =CHC(:O)CH(SPh)Me	Boiling THFe	(4)	52
(3a)	Me ₂ N+=CH ₂ Cl-	MeCNa	(5)	64
(3a)	O ₂ NCH=CHCO ₂ Me ^e	Benzene d	(6)	63
(3b)	Ethyl acrylate	Boiling THF	(7)	64
(3b)	Maleic anhydride	Boiling THF	(8)	72
(3b)	N-Phenylmaleimide	Boiling benzene	(9)	91

^a Assumed endo-addition, partly confirmed by n.m.r. spectroscopy. ^b Pure isolated product. ^c THF = tetrahydroluran. ¹ At room temperature. e trans.

[†] No reprints available.

In contrast, treatment of the prop-2-ynyl alcohol (10) with sodium hydride in dimethylformamide at 5 °C, followed by dimethylthiocarbamoyl chloride gave the product (11) and none of the allene

We thank the SRC and Glaxo-Allenburys Research Ltd for grants

(Received, 3rd December 1979, Com 1262)

 ¹ H Schlossarczyk W Sieber, M Hesse, H J Hanson, and H Schmid, Helv Chim Acta, 1973, 56, 875
 ² D G Oelberg and M D Schiavelli, J Org Chem, 1977, 42, 1804
 ³ J F W Keana, J S Bland, P E Eckler, and V Nelson, J Org Chem, 1976, 41, 2124