Journal of

The Chemical Society,

Chemical Communications

NUMBER 5/1980

Phosphoryl Compounds in Strong Acids. Stability of the P-N Bond and Alkyl-oxygen Cleavage of Phosphoramidates in Trifluoromethanesulphonic Acid

By **TOMASZ** A. MODRO

(Departnzent of Organic Cltenaistry, University of Cape Town, Private Bag, Rondeboscla **7700,** *Republic of Soztth Africa)*

Summary In trifluoromethanesulphonic acid (HTFMS) the P-N bond of $(RO)_2P(O)NMe_2$ is stable, but de-Oalkylation is observed ; rates of the oxygen-alkyl cleavage of phosphoramidates and some other phosphoryl compounds in HTFMS have been determined.

ACID-CATALYSED solvolysis of phosphoric amides $X(Y)P(O)$ - NR_2 involves the associative $(A-2)$ mechanism.¹ Although the contribution of an $A-1$ pathway has been suggested,² the generality of the bimolecular, $S_n 2(P)$ mechanism seems well established.³ Such behaviour is due to the fact that phosphoryl compounds are reluctant to form phosphorylium ions $X(Y)PO^{+.4}$ In consequence, nucleophilic assistance is required in the rate-determining step. Under conditions of high acidity but low nucleophilicity, reactions at centres other than phosphorus can occur; *e.g.,* N-alkyl bond cleavage. 5 Under acidic conditions the P-N bond in phosphoramidates is much less stable than the corresponding ester function;¹ this is explained by the greater basicity and better leaving ability of the (protonated) amino substituent.

We now report the high stability of the P-N bond in strongly acidic but poorly nucleophilic media such as trifluoromethanesulphonic acid (HTFMS). When the NN dimethyl dimethyl-phosphoramidate **(1)** is dissolved in rigorously anhydrous HTFMS the n.m.r. signal of the NMe, group remains virtually unchanged for a period of *ca.* **70** h. Under these conditions however, slow demethylation takes place (reaction **1).** Reaction **(1)** can be easily followed by

HTFMS $(MeO)_2P(O)NMe_2 \longrightarrow (HO)_2P(O)NMe_2 + 2 Me-TFMS$ (1) **(1)**

IH n.m.r. spectroscopy, since a doublet of Me0 groups in **(1)** (65.4 Hz downfield from $Me₂N$, $J_{H,P}$ 12.0 Hz) is replaced by a singlet (61.4 Hz downfield from Me₂N).[†] The reaction follows pseudo first-order kinetics with the observed rate constant $k_{\psi} = 6.55 \times 10^{-6} \text{ s}^{-1}$ ($r = 0.998$).⁴ Kinetics were measured over more than two half-lives and no curvature was observed, which indicates that the first and second demethylation steps proceed with the same rate. When the 0-demethylation is complete, more than *80%* of the amide function remains unchanged. We believe that reaction **(1)** involves the unimolecular oxygen-alkyl cleavage in protonated **(1).** For the NN-dimethyl diethyl-phosphoramidate (2) the de-ethylation was faster; $h_{\psi} = 1.7 \times 10^{-4}$ s^{-1} ($r = 0.995$) [methyl of the EtO group in (2) t of d, $J_{H,H}$ 6.8 Hz; $J_{H,P}$ 1.6 Hz; after dealkylation t, $J_{H,H}$ 7.4 Hz; **2.4** Hz upfield from substrate]. Again, < **10%** of the P-N bond cleavage was observed. In the NN-dimethyl di-isopropyl-phosphoramidate (3) dealkylation was fast $(t_i < 60 s)$ but the lower limit of the rate constant, $k_{\psi} > 10^{-2}$ s⁻¹ could be established. This gives the relative rates of the

t Identified as methyl trifluoromethanesulphonate by addition of the authentic sample **of** Me-TFMS.

¹H n.m.r. spectra were recorded at 60 MHz on a Varian T-60 spectrometer at a probe temperature 33 \pm 1 °C. Rate constants were determined by integration as described before (ref. 5), and are given per single alkyl gro

oxygen-alkyl fission in $(RO)_2P(O)NMe_2$: $R = Me$, $k_{rel} = 1$; $R = \text{Et}$, $h_{rel} = 26$; $R = \text{Pr}^1$, $h_{rel} > 1500$. Such an order $R = \text{Et}$, $h_{rel} = 26$; $R = \text{Pr}^1$, $h_{rel} > 1500$. Such an order clearly folIows the order of the relative easiness of the carbonium ion formation by group R.§

Our results obviously suggest the O-protonation of a substrate, since only in such a-form as **(4)** can the release of a carboniurn ion result in the re-establishment of the phosphoryl function (reaction **2).** Rate of dealkylation is dependent on the protonation equilibrium. O-Demethylation of (1) was also studied in FSO₃H; $k_{\psi} = 1.05 \times 10^{-5}$ s⁻¹ $(r = 0.998$, and no P-N bond cleavage was observed), *i.e.*, $k_{\psi}(\text{FSO}_3\text{H})/k_{\psi}(\text{HTFMS}) = 1.6$. This ratio correlates well with the relative acidities of the acids; in anhydrous H_2SO_4 $K_3(FSO_3H)/K_3(HTFMS) = 2.8$.⁷

Simple protonation followed by the C-0 bond fission (reaction 2) does not, however, account for the dealkylation reaction. We have measured the rates of the O-Me fission in $(MeO)₂P(O)X$ (5) and found that rates vary drastically with substituent X. Dimethylphosphorofluoridate **(5a,** $X = F$) and phosphorochloridate (5b, $X = Cl$) undergo

demethylation with measurable rates. For **(5a)** the reaction was followed over three half-lives (d, $J_{H,P}$ 12.2 Hz changing to *s*, **3**.6 Hz upfield from substrate); $k_{\psi} = 1.98$ \times 10⁻⁷ s⁻¹. Demethylation of (5b) (d, $J_{H,P}$ 14.2 Hz changing to s, 0.2 Hz lowfield) gave $k_{\psi} = 4.36 \times 10^{-8}$ s⁻¹ $(y = 0.994)$. Trimethyl phosphate (5c, $X =$ OMe) proved to be remarkably resistant to the demethylation; the CH_a signal (d, $J_{H,P}$ 11.6 Hz) remained unchanged for over hundred days *(5c* can therefore be used as a convenient standard for **3lP** n.m.r. spectroscopy in strongly acidic media). The most cautious estimate for *(5c)* gives the upper limit as $k_{\psi} < 6 \times 10^{-9} \text{ s}^{-1}$. The rate constants obtained allow compounds **(5)** to be arranged in an order of decreasing reactivity (Table). The effect of groups X upon

TABLE. Relative rates of demethylation of $(MeO)_2P(O)X$ in HTFMS at 33 ± 1 °C.

dealkylation follows neither the electronegativity order, nor the usual electron-withdrawing effects at phosphorus.8 The reactivity order indicates that the reaction may involve both the monoprotonated $(MeO)_2P(OH)X^+$ (6) and diprotonated (MeO),P(OH) **XH2+ (7)** forms as reactive intermediates, second protonation depending strongly upon the nature of X. In view of this the extremely low reactivity of *(5c)* is especially intriguing. It is possible that the highly symmetrical, tetraoxysubstituted phosphonium ion $(6, X = OMe)$ is particularly stable owing to significant charge delocalization to the four oxygen atoms. 9 It has been reported⁹ that in FSO₃H (5c) is stable, but trimethyl phosphite, probably owing to less symmetrical charge distribution in the conjugate acid, undergoes slow demethylation.

(Received, 6th November **1979;** *Cow.* **1171.)**

§ In formic acid relative rates of solvolysis of RBr are: k_{rel} , (Me) 1; (Et) 1.7; (Prⁱ) 43.⁶ In HTFMS solvent nucleophilic assistance **(if** any) will be much less important than in formic acid.

¹ G. Tomaschewski, and G. Kühn, *J. prakt. Chem.*, 1968, 38, 222; A. W. Garrison, and C. E. Boozer, *J. Amer. Chem. Soc.*, 1968, 90, 3486; T. Koizumi, Y. Kobayashi, and E. Yoshi, Chem. and Pharm. Bull. (Japan), 1976, 24, **605.**

*^a*P. Haake *et al., J. Amer. Chem. SOC.,* **1973, 95, 8066, 8073;** T. Koizumi, Y. Kobayashi, and E. Yoshi, *J.C.S. Chem. Comm.,* **1974, 678.**

- **³M.** J. P. Harger, *J.C.S. Perkin I,* **1979, 1294.**
-
- 5T. **A.** Modro, M. **A.** Lawry, and E. Murphy, *J. Org. Chem.,* **1978, 43,** *5000.* P. Haake, and P. S. Ossip, *J. Amer. Chern. SOC.,* **1971, 93, 6919.**
- D. Bethel1 and V. Gold, 'Carbonium Ions,' Academic Press, London, **1967,** p. **91.**
-
- D. G. Russell, and J. B. Senior, *Canad. J. Chem.*, 1974, 52, 2975.
J. Emsley, and D. Hall, 'The Chemistry of Phosphorus,' Harper and Row, London, 1976, Ch. 2.8.
G. A. Olah, and C. W. McFarland, *J. Org. Chem.*, 1971, 36,
-